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ABSTRACT. In recent papers, new sets of Sheffer and Brenke polynomials based on higher order Bell numbers have been stud-
ied, and several integer sequences related to them have been introduced. In this article other types of Sheffer polynomials are

considered, by introducing the adjoint Peters and adjoint Pidduk polynomials.

1 Introduction

In recent articles [8, 30], we have studied new sets of Sheffer [33] and Brenke [7] polynomials related to higher
order Bell numbers [16]. Furthermore, several integer sequences [34] associated with the considered polynomial
sets, both of exponential [2, 3] and logarithmic type [8], have been introduced.

It is worth to note that exponential and logarithmic polynomials have been recently studied even in the multi-

variate case [21, 22, 23].
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Sheffer sets [33] are a wide class of polynomials generalizing the Appell polynomial sequences [1]. A list of known
Sheffer polynomials can be found in [6]. In preceding articles we have extended the Sheffer sets by introducing
the notion of adjointness.

Adjointness is a general method of associating a family of Sheffer polynomials with another family of Sheffer’s
[24]. This definition is based on an equivalent characterization of Sheffer sets proven in [32, p. 18]. It simply
follows by interchanging two basic elements of the generating function.

By using the general and efficient method already applied in preceding articles [17]-[19], [25]-[29], it is possible to
construct the fundamental properties of polynomials adjoint to the classical ones, such as the recurrence relation,
the shift operators and the differential equation.

We have already applied this technique in several cases [9, 14, 15, 31]. In this article we apply the same technique
to other types of Sheffer polynomials, by considering the adjoint Peters and adjoint Pidduk polynomials.

2 Sheffer polynomials

The Sheffer polynomials {s,(x)} are introduced [33] by means of the exponential generating function [35] of the

type:
A exp(eH(0) = Y sulx) o (1)
n=0 .
where
A(ﬂ:Zan%, (ap #0),
n=0
@)
e tn
HO = Ly (0=0)

According to a different characterization (see [32, p. 18]), the same polynomial sequence can be defined by means
of the pair (g(t), f(t)), where g(t) is an invertible series and f(t) is a delta series:
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g(t) = io on (g0 £ 0),
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Denoting by f~!(t) the compositional inverse of f(t) (i.e. such that f (f~1(t)) = f~1 (f(t)) = #), the exponential

generating function of the sequence {s,(x)} is given by
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A(t) = H(t) = f71(t). 5)
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When g(t) = 1, the Sheffer sequence corresponding to the pair (1, f(t)) is called the associated Sheffer sequence

{on(x)} for f(t), and its exponential generating function is given by

exp <xf ) 2 —. (6)

A list of known Sheffer polynomial sequences and their associated ones can be found in [6].

3 Adjointness for Peters polynomials

According to the above considerations, Sheffer polynomials are characterized both by the ordered couples (A(t), H(t)),

or by (g(t), f(t))-

Definition - Adjoint Sheffer polynomials are defined by interchanging the ordered couple (A(t), H(t)) with
(g(t), f(t)), when writing the generating function.

Here and in the following the tilde “~", above the symbol of a polynomial set stands for the adjective “adjoint”.
Here we consider the adjoint Peters polynomials, defined through their generating function, i.e. by putting

Alty=(1+eMH,  H(t)=e -1,

@)
o B tk
G(t,x) = (1+eM)" exp [x(ef —1)] = k;:)sk(x;}\,y) i
3.1 A differential identity
Theorem 3.1. - For any k > 0, the polynomials 5 (x; A, p) satisfy the differential identity:
k-1 k
(A ) =) (h) Sn(xA ) ®)
h=0
Proof. - By differentiating both sides of equation (7), with respect to x, we find
9G > tk
g:(et—l)G(t,x)*eG(tx k; (A u) - )
ie.
00 tk ) tk
Y 5 x)\y ZZ()ShX/\P‘) Zsﬁ((x;/\,y)ﬁ
k=1 0h= k=0
Then, putting 5, (x; A, ) = 0, equation (9) becomes
i’k 00 k k tk
¥ s = 1 |3 () sl —swam| &
k=0 k=0 Lh=0 :

so that the differential identity (8) follows.



G. Bretti, P. Natalini and P.E. Ricci

25
3.2 Recurrence relation
First note that, putting
At 00 k
e t
1+ et kg‘)akﬁ' (10)
we find
) k ) k ) k oo k
et t it t
LG =Lt LM g Lo
i.e.

by

) ktk 00 tk ook k —h i’k
ZAF:ZDC](F‘FZZ h A 4
k=0 : k=0 : k=0 h=0

so that the coefficients ay are defined by the recurrence relation

Theorem 3.2. - For any k > 0, the polynomials 5 (x; A, 1)) satisfy the following recurrence relation

k
< k .
Sep(wA ) =pur Y, (h) [ + x] S (A, 1),
h=0
where the coefficients wy are defined by equation (11)

Proof. - Differentiating G(t, x) with respect to t, we have

9G(t,x)  pAeM

k
o —1+8AtG(tx)+xthx k;)skﬂx)ty)k',
ie.
tkOO o0 co tk k
i 8 g s x5 B st = 5 satda

Mii()f\” (wam bt

!
k=0h=0 k!

el tk k
xZZ()ShX)\V ZskaMi)k,,
kf —
so that the recurrence relation (12) follows
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3.3 Shift operators

We recall that a polynomial set {p,(x)} is called quasi-monomial if and only if there exist two operators P and M

such that

P(pn(x)) = npp_1(x),  M(pu(x)) = ppsa(x), (n=12,...). (14)

P is called the derivative operator and M the multiplication operator, as they act in the same way of classical opera-
tors on monomials.

This definition traces back to a paper by J.F. Steffensen [36], recently improved by G. Dattoli [11] and widely used
in several applications (see e.g. [12, 13]).

Y. Ben Cheikh [4] proved that every polynomial set is quasi-monomial under the action of suitable derivative and

multiplication operators. In particular, in the same article (Corollary 3.2), the following result is proved

Theorem 3.3. Let (p,(x)) denote a Boas-Buck polynomial set, i.e. a set defined by the generating function

(o) tn
AMYHD) = 1 pal) 1 (15)
n=
where
A(t) =) ant", (dg #0),
n=0
(16)
p(t) =Y t", (4 #0 Vn),
n=0
with P (t) not a polynomial, and lastly
H(t) =Y hy "t (hg #£0). (17)
n=0
Let 0 € A7) the lowering operator defined by
(1) =0, o) =211 m=12,...). (18)
Tn
Put
o (x") = % X (n=0,1,2,...). (19)
n

Denoting, as before, by f(t) the compositional inverse of H(t), the Boas-Buck polynomial set {pn(x)} is quasi-monomial

under the action of the operators

5 o AU D e
P=flo), W= G D H ), (20)

where prime denotes the ordinary derivatives with respect to t.
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Note that in our case we are dealing with a Sheffer polynomial set, so that since we have () = ¢!, the operator

o defined by equation (18) simply reduces to the derivative operator Dy. Furthermore, we have:

Aty =1+,  H(t)=e -1, H'(t) = et

0 k
Gltx) = (1+eM) exp [x(e — 1)) = ¥ se(wAp) o7
k=0 :
A/(t) _ M
A M e
=) B tk+1
F(t) = H (1) =log(t +1) = ¥ (-1,

so that we have the theorem

Theorem 3.4. The adjoint Peters polynomial set {5,(x; A, 1))} is quasi-monomial under the action of the operators

A > Dit
P=1log(Dy+1) = k;)(—l) P
(21)
, (Dx + 1)
= ——2 Dy +1
M=y 1+(Dx+1)7\+x( r+1),

where

3.4 Differential equation

According to the results of monomiality principle [11], the quasi-monomial polynomials {p,(x)} satisfy the dif-

ferential equation

MP pn(x) =npn(x). (22)

Recalling the series expansion

t

*1k+1tk
1+¢ k( ) ’

agh

1

in the present case, we have the theorem

Theorem 3.5. The Sheffer-type adjoint Peters polynomials {5, (x; A, 1))} satisfy the differential equation

(D +1)* > y DiH1
x4y (Dy+1 -1
T+ (D ¥ Pt k;)( U

Sn( A p) =nsu(xA,p),
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ie.

{;m Y (- Y ();lk) D!+ x (Dy +1)
k=1 h=0
n—1 Dk+1
kZ(fl) 1 on(GA ) = nda(x A p),
=0

because, for any fixed n, the series expansions in equation (23) reduces to a finite sum when it are applied to a polynomial of

degree n.

3.5 First few values of 5,(x;A) :=35,(x; A, 1)

So(x;A) =2,

51(x6;A) =2x+ A,

(1) =2x2 +2(A + 1)x + A2,

53(x;A) = 203 +3(A +2)x + (BAZ +3A +2)x + A3,

54 (1) = 2x* +4(A 4 3)x% +2(BA2 + 6A + 7)x% +2(2A3 4312 424 + 1)x + A4,
55(x;A) = 225 +5(A +4)x* + 10(A2 4+ 31 +5)x% + 5(24% + 642 + 74 + 6)x% +

+ (5A% 1043 4 10A2 + 51 +2)x + A3,

86(x;A) = 2x% + 6(A +5)x° +5(3A2 + 121 +26)x* + 10(2A3 + 912 + 151 + 18)x°
+ (15A% 4 60A3 + 10512 + 90A + 62)x% +
+ (64 + 15A% 4+ 20A3 + 1502 + 64 + 2)x + A®

and, in particular,

3.6 First few values of 5,(x) :=35,(x;1,1)

(x)

(x)

(x)

(x) = 2x3 4+ 9x2 +8x +1,

4(x) = 2x* +16x3 +32x% + 16x + 1,
(x) = 2x° + 25x* 4+ 90x% + 105x% + 32x + 1,
(x) = 2x° +36x° + 205x* + 440x% + 332x2 + 64x + 1,

(x) = 2x7 +49x° + 406x° + 1400x* + 2002x3 4 1029x2 + 128x + 1,
(x) = 228 + 64x7 + 728x0 + 3696x° + 8652x* + 8736x3 + 3152x% + 256x + 1

Further values can be easily achieved by using Wolfram Alpha®©.
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4 Adjoint Pidduk polynomials
Here we consider the adjoint Pidduk polynomials, defined through their generating function, i.e. by putting
2 el -1
A=y HO= a5
(24)
2 el —1 N
Gltx) = g &P Hetﬂﬂ =LA

4.1 A differential identity

Theorem 4.1. - For any k > 0, the polynomials py(x) satisfy the differential identity:

ko rk
~/ _ b B ,
) = 1 () et

(25)
where the coefficients by are the solution of the triangular system

) 1, (26)
by = 5 [1—}[20 (h)bh} ,

more precisely, because of the symmetry of the function involved, the preceding equation (9) becomes, Yk > 0

by, =0,
[251] (27)
2k +1
boky1 = [ ; (2€+ 1) bzé+1]
Proof. - By differentiating both sides of equation (7), with respect to x, we find

oG et —1

i G(t, x). (28)
Putting

ef+1 Zb" Kl (29)
we find

e flfzk,q— (e +1) Zbkk' zz()bhwkzobkk!,

0h=0

) k o) k k
kgo(l—bk)%— YL ()i =1

B
k=0h=0 k!

£ o x ()]
1o b ()bh £y,
k=0 h=0 h k!
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and therefore the coefficients by satisfy equations (26)-(27).

Then, putting fj(x) = 0, equation (11) becomes
G & S o2& tk
gzkg) Zbkk,z lgg()bkhph X)

so that the differential identity (25) follows.

4.2 Recurrence relation

First note that, as a consequence of equation (12), we have

et 1d (et -1
e+ 12 24t (et+1) Z k+1 7 k' ’ (30)

Theorem 4.2. - For any k > 0, the polynomials py(x) satisfy the following recurrence relation:

Prr1(x) = i (l;) [g bk—n+1— ﬂk—h] pn(x), 31)

h=0

where the coefficients ay are the solution of the triangular system

ag = 1/2,
k=1 7k (32)
) (h) ap+2a, =1, Vk>1.
h=0
Proof. - Differentiating G(t, x) with respect to t, we have
aG(t,x) et et
o @O T O 3
Putting
et+1 Z kk" 34)

it is easily seen that the coefficients a; are the solution of the triangular system (32).

Therefore we find

aG tk

Zpk+1 Z k+1k,ZPk i Z kk, ZPk K

ie.

£k

2Pk+1 —;§é<)bkh+lph o ié()”kkﬁh ),tj,

so that the recurrence relation (31) follows.
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Note that, even in this case, we are dealing with a Sheffer polynomial set, so that since we have (f) = et, the

operator ¢ defined by equation (18) simply reduces to the derivative operator Dy. Furthermore, we have:

t_ / t
2 H < ¢ 1 Al(t) e

AV=arr HO=mq Ay~ at

1+ 0 42k+1
f(y=H1(t) = IOg( t>—2settanht_2k§)2k+1,

2et

SANCER TS

so that we have the theorem

Theorem 4.3. The adjoint Pidduk polynomial set {pn(x)} is quasi-monomial under the action of the operators

R 1+ Dy N
p=1 ) =2 r
Og(lfDx) Lt

(35)

A

M=13[-(1+Dy)+x(1-D2)].

4.3 Differential equation

According to the results of monomiality principle [11], the quasi-monomial polynomials {p,(x)} satisfy the dif-

ferential equation
MP py(x) = npn(x). (36)
In the present case, we have

Theorem 4.4. The Sheffer-type adjoint Pidduk polynomials {p,(x)} satisfy the differential equation

[xa-ph-+09) ¥ DY () = ()
X 2 M k;)mpnx =npn(x

ie.

[ , (7] D2k+1 i i .
x(1—-D%) — 1+Dx} Z p =npn(x), (37)

because, for any fixed n, the last series expansion reduces to a finite sum, with upper limit [”T’l] , when it is

applied to a polynomial of degree n.
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4.4 First few values of the adjoint Pidduk polynomials

po(x) =1

pr(x) = 3(x—1)

pa(x) = 3 (x* —2x)

pa(x) = §(x3 —3x2 —2x +2)

pa(x) =z (x* — 4x3 — 8x% + 16x)

ps(x) = 55 (x° — 5x* — 2023 + 60x% + 16x — 16)

Po(x) = &5 (x® — 6x5 — 40x* + 160x> + 13632 — 272x)

P7(x) = 125 (x7 — 7x® — 70x5 + 350x* 4 616x% — 1848x2 — 272x + 272)

Ps(x) = 5ie (x® — 827 — 112x0 + 672x5 + 2016x* — 8064x® — 3968x% + 7936x)

Further values can be easily achieved by using Wolfram Alpha®©.

5 Conclusion

We have introduced two set of adjoint Sheffer polynomials, called adjoint Peters and adjoint Pidduk polynomials,
in the framework of a general technique associating a new Sheffer polynomial set starting from a given one [24].
We have derived their main characteristics by using the monomiality principle, introduced by G. Dattoli [11], and
the possibility to construct the shift operators by means of preceding results by Y. Ben Cheihk [4]. We have found,
as a consequence, the differential equations satisfied by the considered polynomials.

In fact, it has been shown that, for the polynomials of the Sheffer class, the differential equation follows from the
basic elements of their generating function, in a constructive way, by using a simple and efficient method based
on the monomiality principle.

This technique has been already used in several cases [9, 14, 15, 31] and can be applied for every Sheffer set. Fur-
thermore, more generally, it could be used even for the Boas-Buck polynomials, provided that the general shift
operators defined in the Ben Cheikh article [4] can be explicitly derived.

It is worth noting that, using the technique applied in this article, it is possible to avoid the use of the linear
algebraic approach described in [10, 37, 37, 38], which makes use of determinantal forms of the considered poly-
nomials, a method that seems to be less natural than the one described above, as it requires elements foreign to

the theory of polynomials.
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