Algebraic properties of the path complexes of cycles

Seyed Mohammad Ajdani* and Francisco Bulnes1
*Department of Mathematics, Zanjan Branch, Islamic Azad University, Zanjan, Iran.
E-mail:majdani2@yahoo.com
1Inamei Director
Investigación internacional Avanzada en Matemáticas e Ingeniería chalco, Mexico.

ABSTRACT.Let G be a simple graph and $\Delta_t(G)$ be a simplicial complex whose facets correspond to the paths of length t ($t \geq 2$) in G. It is shown that $\Delta_t(C_n)$ is matroid, vertex decomposable, shellable and Cohen-Macaulay if and only if $n = t$ or $n = t + 1$, where C_n is an n-cycle. As a consequence we show that if $n = t$ or $t + 1$ then $\Delta_t(C_n)$ is partitionable and Stanley’s conjecture holds for $K[\Delta_t(C_n)]$.

Introduction

Let $R = K[x_1, \ldots, x_n]$, where K is a field. Fix an integer $n \geq t \geq 2$ and let G be a directed graph. A sequence x_{i_1}, \ldots, x_{i_t} of distinct vertices is called a path of length t if there are $t - 1$ distinct directed edges e_1, \ldots, e_{t-1} where e_j is a directed edge from x_{i_j} to $x_{i_{j+1}}$. Then the path ideal of G of length t is the monomial ideal $I_t(G) = (x_{i_1} \ldots x_{i_t} : x_{i_1}, \ldots, x_{i_t} \text{ is a path of length } t \text{ in } G)$ in the polynomial ring $R = K[x_1, \ldots, x_n]$. The distance $d(x,y)$ of two vertices x and y of a graph G is the length of the shortest path from x to y. The path complex $\Delta_t(G)$ is defined by

$$\Delta_t(G) = (\{x_{i_1}, \ldots, x_{i_t} : x_{i_1}, \ldots, x_{i_t} \text{ is a path of length } t \text{ in } G\}).$$

* Corresponding Author.

Received January 01, 2019; revised March 22, 2019; accepted March 30, 2019.
2010 Mathematics Subject Classification: 13F20; 05E40; 13F55.
Key words and phrases: Vertex decomposable, simplicial complex, Matroid, path.
This is an open access article under the CC BY license http://creativecommons.org/licenses/by/3.0/.
Path ideals of graphs were first introduced by Conca and De Negri [3] in the context of monomial ideals of linear type. Recently the path ideal of cycles has been extensively studied by several mathematicians. In [9], it is shown that $I_2(C_n)$ is sequentially Cohen-Macaulay, if and only if, $n = 3$ or $n = 5$. Generalizing this result, in [13], it is proved that $I_t(C_n)$, $(t > 2)$, is sequentially Cohen-Macaulay, if and only if $n = t$ or $n = t + 1$ or $n = 2t + 1$. Also, the Betti numbers of the ideal $I_t(C_n)$ and $I_t(L_n)$ is computed explicitly in [1]. In particular, it has been shown that:

Theorem 0.1 ([1, Corollary 5.15]). Let n, t, p and d be integers such that $n \geq t \geq 2$, $n = (t + 1)p + d$, where $p \geq 0$ and $0 \leq d < (t + 1)$.

(i) The projective dimension of the path ideal of a graph cycle C_n or line L_n is given by,

$$\text{pd } (I_t(C_n)) = \begin{cases} 2p, & d \neq 0 \\ 2p - 1, & d = 0 \end{cases} \quad \text{pd } (I_t(L_n)) = \begin{cases} 2p - 1, & d \neq t \\ 2p, & d = t \end{cases}$$

(ii) The regularity of the path ideal of a graph cycle C_n or line L_n is given by,

$$\text{reg } (I_t(C_n)) = (t - 1)p + d + 1 \quad \text{reg } (I_t(L_n)) = \begin{cases} p(t - 1) + 1, & d < t \\ p(t - 1) + t, & d = t \end{cases}$$

In [8] it has been shown that, $\Delta_t(G)$ is a simplicial tree if G is a rooted tree and $t \geq 2$. One of interesting problems in combinatorial commutative algebra is the Stanley’s conjectures. The Stanley’s conjectures are studied by many researchers. Let R be a \mathbb{N}^n-graded ring and M a \mathbb{Z}^n-graded R-module. Then Stanley [10] conjectured that

$${\text{depth}}(M) \leq s\text{depth}(M)$$

He also conjectured in [11] that each Cohen-Macaulay simplicial complex is partitionable. Herzog, Soleyman Jahan and Yassemi in [7] showed that the conjecture about partitionability is a special case of the Stanley’s first conjecture. In this work, we study algebraic properties of $\Delta_t(C_n)$. In Section 1, we recall some definitions and results which will be needed later. In Section 2, for all $t > 2$ we show that the following conditions are equivalent:

(i) $\Delta_t(C_n)$ is matroid;
(ii) $\Delta_t(C_n)$ is vertex decomposable;
(iii) $\Delta_t(C_n)$ is shellable;
(iv) $\Delta_t(C_n)$ is Cohen-Macaulay;
(v) $n = t$ or $n = t + 1$.

(see Theorem 2.6).

In Section 3 as an application of our results we show that if $n = t$ or $n = t + 1$ then $\Delta_t(C_n)$ is partitionable and Stanley’s conjecture holds for $K[\Delta_t(C_n)]$.

Seyed Mohammad Ajdani and Francisco Bulnes
1 Preliminaries

In this section we recall some definitions and results which will be needed later.

Definition 1.1. A simplicial complex Δ over a set of vertices $V = \{x_1, \ldots, x_n\}$, is a collection of subsets of V, with the property that:

(a) $\{x_i\} \in \Delta$, for all i;

(b) if $F \in \Delta$, then all subsets of F are also in Δ (including the empty set).

An element of Δ is called a face of Δ and complement of a face F is $V \setminus F$ and it is denoted by F^c. Also, the complement of the simplicial complex $\Delta = \langle F_1, \ldots, F_q \rangle$ is $\Delta^c = \langle F_1^c, \ldots, F_q^c \rangle$. The dimension of a face F of Δ, $\dim F$, is $|F| - 1$ where, $|F|$ is the number of elements of F and $\dim \emptyset = -1$. The faces of dimensions 0 and 1 are called vertices and edges, respectively. A non-face of Δ is a subset F of V with $F \not\in \Delta$. We denote by $\mathcal{N}(\Delta)$, the set of all minimal non-faces of Δ. The maximal faces of Δ under inclusion are called facets of Δ. The dimension of the simplicial complex Δ, $\dim \Delta$, is the maximum of dimensions of its facets. If all facets of Δ have the same dimension, then Δ is called pure.

Let $\mathcal{F}(\Delta) = \{F_1, \ldots, F_q\}$ be the facet set of Δ. It is clear that $\mathcal{F}(\Delta)$ determines Δ completely and we write $\Delta = \langle F_1, \ldots, F_q \rangle$. A simplicial complex with only one facet is called a simplex. A simplicial complex Γ is called a subcomplex of Δ, if $\mathcal{F}(\Gamma) \subset \mathcal{F}(\Delta)$.

For $v \in V$, the subcomplex of Δ obtained by removing all faces $F \in \Delta$ with $v \in F$ is denoted by $\Delta \setminus v$. That is,

$$\Delta \setminus v = \{F \in \Delta: v \not\in F\}.$$

The link of a face $F \in \Delta$, denoted by $\text{link}_\Delta(F)$, is a simplicial complex on V with the faces, $G \in \Delta$ such that, $G \cap F = \emptyset$ and $G \cup F \in \Delta$. The link of a vertex $v \in V$ is simply denoted by $\text{link}_\Delta(v)$.

$$\text{link}_\Delta(v) = \{F \in \Delta: v \not\in F, F \cup \{v\} \in \Delta\}.$$

Let Δ be a simplicial complex over n vertices $\{x_1, \ldots, x_n\}$. For $F \subset \{x_1, \ldots, x_n\}$, we set:

$$x_F = \prod_{x_i \in F} x_i.$$

We define the facet ideal of Δ, denoted by $I(\Delta)$, to be the ideal of S generated by $\{x_F: F \in \mathcal{F}(\Delta)\}$. The non-face ideal or the Stanley-Reisner ideal of Δ, denoted by I_{Δ}, is the ideal of S generated by square-free monomials $\{x_F: F \in \mathcal{N}(\Delta)\}$. Also we call $K[\Delta] := S/I_\Delta$ the Stanley-Reisner ring of Δ.

Definition 1.2. A simplicial complex Δ on $\{x_1, \ldots, x_n\}$ is said to be a matroid if, for any two facets F and G of Δ and any $x_j \in F$, there exists a $x_j \in G$ such that $(F \setminus \{x_j\}) \cup \{x_j\}$ is a facet of Δ.

Definition 1.3. A simplicial complex Δ is recursively defined to be vertex decomposable, if it is either a simplex, or else has some vertex v so that,

(a) Both $\Delta \setminus v$ and $\text{link}_\Delta(v)$ are vertex decomposable, and

(b) No face of $\text{link}_\Delta(v)$ is a facet of $\Delta \setminus v$.

A vertex \(v \) which satisfies in condition (b) is called a *shelling vertex*.

Definition 1.4. A simplicial complex \(\Delta \) is *shellable*, if the facets of \(\Delta \) can be ordered \(F_1, \ldots, F_s \) such that, for all \(1 \leq i < j \leq s \), there exists some \(v \in F_j \setminus F_i \) and some \(l \in \{1, \ldots, j-1\} \) with \(F_j \setminus F_i = \{v\} \).

A simplicial complex \(\Delta \) is called disconnected, if the vertex set \(V \) of \(\Delta \) is a disjoint union \(V = V_1 \cup V_2 \) such that no face of \(\Delta \) has vertices in both \(V_1 \) and \(V_2 \). Otherwise \(\Delta \) is connected. It is well-known that

\[\text{matroid} \implies \text{vertex decomposable} \implies \text{shellable} \implies \text{Cohen-Macaulay} \]

Definition 1.5. Given a simplicial complex \(\Delta \) on \(V \), we define \(\Delta^\vee \), the *Alexander dual* of \(\Delta \), by

\[\Delta^\vee = \{ V \setminus F : F \notin \Delta \} \]

It is known that for the complex \(\Delta \) one has \(I_{\Delta^\vee} = I(\Delta^c) \). Let \(I \neq 0 \) be a homogeneous ideal of \(S \) and \(N \) be the set of non-negative integers. For every \(i \in N \cup \{0\} \), one defines:

\[t^S_i(I) = \max\{j : \beta^S_{i,j}(I) \neq 0\} \]

where \(\beta^S_{i,j}(I) \) is the \(i, j \)-th graded Betti number of \(I \) as an \(S \)-module. The *Castelnuovo-Mumford regularity* of \(I \) is given by:

\[\text{reg}(I) = \sup\{t^S_i(I) - i : i \in \mathbb{Z}\} \]

We say that the ideal \(I \) has a \(d \)-linear resolution, if \(I \) is generated by homogeneous polynomials of degree \(d \) and \(\beta^S_{i,j}(I) = 0 \), for all \(j \neq i + d \) and \(i \geq 0 \). For an ideal which has a \(d \)-linear resolution, the Castelnuovo-Mumford regularity would be \(d \). If \(I \) is a graded ideal of \(S \), then we write \((l_d) \) for the ideal generated by all homogeneous polynomials of degree \(d \) belonging to \(I \).

Definition 1.6. A graded ideal \(I \) is componentwise linear if \((l_d) \) has a linear resolution for all \(d \).

Also, we write \(l_{(d)} \) for the ideal generated by the squarefree monomials of degree \(d \) belonging to \(I \).

Definition 1.7. A graded \(S \)-module \(M \) is called *sequentially Cohen-Macaulay* (over \(K \)), if there exists a finite filtration of graded \(S \)-modules,

\[0 = M_0 \subset M_1 \subset \cdots \subset M_r = M \]

such that each \(M_i/M_{i-1} \) is Cohen-Macaulay, and the Krull dimensions of the quotients are increasing:

\[\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1}) \]

The Alexander dual, allows us to make a bridge between (sequentially) Cohen-Macaulay ideals and (componentwise) linear ideals.

Definition 1.8 (Alexander duality). For a square-free monomial ideal \(I = (M_1, \ldots, M_q) \subseteq S = K[x_1, \ldots, x_n] \), the *Alexander dual* of \(I \), denoted by \(I^\vee \), is defined to be:

\[I^\vee = P_{M_1} \cap \cdots \cap P_{M_q} \]

where, \(P_{M_i} \) is prime ideal generated by \(\{x_j : x_j \in M_i\} \).
Theorem 1.9 ([6, Proposition 8.2.20], [4, Theorem 3]). Let \(I \) be a square-free monomial ideal in \(S = \mathbb{K}[x_1, \ldots, x_n] \).

(i) The ideal \(I \) is componentwise linear ideal if and only if \(S/I' \) is sequentially Cohen-Macaulay.

(ii) The ideal \(I \) has a \(q \)-linear resolution if and only if \(S/I' \) is Cohen-Macaulay of dimension \(n-q \).

Remark 1.10. Two special cases, we will be considering in this paper, are when \(G \) is a cycle \(C_n \), or a line graph \(L_n \) on vertices \(\{x_1, \ldots, x_n\} \) with edges

\[
E(C_n) = \{(x_1, x_2), (x_2, x_3), \ldots, (x_{n-1}, x_n), (x_n, x_1)\};
\]

\[
E(L_n) = \{(x_1, x_2), (x_2, x_3), \ldots, (x_{n-1}, x_n)\}.
\]

2 Vertex decomposability path complexes of cycles

As the main result of this section, it is shown that \(\Delta_t(C_n) \) is matroid, vertex decomposable, shellable and Cohen-Macaulay if and only if \(n = t \) or \(n = t + 1 \). For the proof we shall need the following lemmas and propositions.

Lemma 2.1. Let \(\Delta_t(L_n) \) be a simplicial complex on \(\{x_1, \ldots, x_n\} \) and \(2 \leq t \leq n \). Then \(\Delta_t(L_n) \) is vertex decomposable.

Proof. If \(t = n \), then \(\Delta_n(L_n) \) is a simplex which is vertex decomposable. Let \(2 \leq t < n \) then one has

\[
\Delta_t(L_n) = \langle\{x_1, \ldots, x_t\}, \{x_2, \ldots, x_{t+1}\}, \ldots, \{x_{n-t+1}, \ldots, x_n\}\rangle.
\]

So \(\Delta_t(L_n) \setminus x_n = \langle\{x_1, \ldots, x_t\}, \{x_2, \ldots, x_{t+1}\}, \ldots, \{x_{n-t}, x_{n-1}\}\rangle \). Now we use induction on the number of vertices of \(L_n \) and by induction hypothesis \(\Delta_t(L_n) \setminus x_n \) is vertex decomposable. On the other hand, it is clear that \(\text{link}_{\Delta_t(L_n)} \{x_n\} = \langle\{x_{n-t+1}, \ldots, x_{n-1}\}\rangle \). Thus \(\text{link}_{\Delta_t(L_n)} \{x_n\} \) is a simplex which is not a facet of \(\Delta_t(L_n) \setminus x_n \). Therefore \(\Delta_t(L_n) \) is vertex decomposable.

Lemma 2.2. Let \(\Delta_2(C_n) \) be a simplicial complex on \(\{x_1, \ldots, x_n\} \). Then \(\Delta_2(C_n) \) is vertex decomposable.

Proof. Since \(\Delta_2(C_n) = \langle\{x_1, x_2\}, \{x_2, x_3\}, \ldots, \{x_{n-1}, x_n\}, \{x_n, x_1\}\rangle \) then we have

\[
\Delta_2(C_n) \setminus x_n = \langle\{x_1, x_2\}, \{x_2, x_3\}, \ldots, \{x_{n-2}, x_{n-1}\}\rangle.
\]

By lemma 2.1 \(\Delta_2(C_n) \setminus x_n \) is vertex decomposable. Also it is trivial that \(\text{link}_{\Delta_2(C_n)} \{x_1\} = \langle\{x_{n-1}\}, \{x_1\}\rangle \) is vertex decomposable and no face of \(\text{link}_{\Delta_2(C_n)} \{x_1\} \) is a facet of \(\Delta_2(C_n) \setminus x_n \). Therefore \(\Delta_2(C_n) \) is vertex decomposable.

Lemma 2.3. Let \(\Delta_t(C_n) \) be a simplicial complex on \(\{x_1, \ldots, x_n\} \) and \(3 \leq t \leq n - 2 \). Then \(\Delta_t(C_n) \) is not Cohen-Macaulay.

Proof. It suffices to show that \(I_{\Delta_t(C_n)^{\vee}} \) has not a linear resolution. Since \(I_{\Delta_t(C_n)^{\vee}} = I(\Delta_t(C_n)^\Delta) \) then one can easily check that \(I_{\Delta_t(C_n)^{\vee}} = I_{n-1}(C_n) \). By Theorem 0.1 we have

\[
\text{reg}(I_{\Delta_t(C_n)^{\vee}}) = (n - t - 1)p + d + 1.
\]

Since \(3 \leq t \leq n - 2 \) then one has \(\text{reg}(I_{\Delta_t(C_n)^{\vee}}) \neq n - t \) and by Theorem 1.9 \(\Delta_t(C_n) \) is not Cohen-Macaulay.
Proof. By lemma 2.3 it suffices to show that if \(n = t \) or \(t + 1 \), then \(\Delta_t(C_n) \) is vertex decomposable. If \(n = t \), then \(\Delta_n(C_n) \) is a simplex which is vertex decomposable.

If \(t = n - 1 \), then we have

\[
\Delta_{n-1}(C_n) = \langle \{x_1, \ldots, x_{n-1}\}, \{x_2, \ldots, x_n\}, \{x_3, \ldots, x_n, x_1\}, \ldots, \{x_{n-1}, x_1, \ldots, x_{n-2}\} \rangle.
\]

Now we use induction on the number of vertices of \(C_n \) and show that \(\Delta_{n-1}(C_n) \) is vertex decomposable. It is clear that \(\Delta_{n-1}(C_n) \setminus \{x_n\} = \langle \{x_1, \ldots, x_{n-1}\} \rangle \) is a simplex which is vertex decomposable.

On the other hand,

\[
\text{link}_{\Delta_{n-1}(C_n)} \{x_n\} = \langle \{x_1, \ldots, x_{n-2}\}, \ldots, \{x_{n-1}, x_1, \ldots, x_{n-3}\} \rangle = \Delta_{n-2}(C_{n-1}).
\]

By induction hypothesis \(\text{link}_{\Delta_{n-1}(C_n)} \{x_n\} \) is vertex decomposable. It is easy to see that no face of \(\text{link}_{\Delta_{n-1}(C_n)} \{x_n\} \) is a facet of \(\Delta_{n-1}(C_n) \setminus \{x_n\} \). Therefore \(\Delta_{n-1}(C_n) \) is vertex decomposable. \(\square \)

Proposition 2.5. \(\Delta_2(C_n) \) is a matroid if and only if \(n = 3 \) or \(4 \).

Proof. If \(n = 3 \) or \(4 \), then it is easy to see that \(\Delta_2(C_n) \) is a matroid. Now we prove the converse. It suffices to show that \(\Delta_2(C_n) \) is not a matroid for all \(n \geq 5 \). We consider two facets \(\{x_1, x_2\} \) and \(\{x_{n-1}, x_n\} \). Then we have

\[
(\{x_1, x_2\} \setminus \{x_1\}) \cup \{x_{n-1}\} = \{x_2, x_{n-1}\} \quad \text{and} \quad (\{x_1, x_2\} \setminus \{x_1\}) \cup \{x_n\} = \{x_2, x_n\}.
\]

Since \(\{x_2, x_{n-1}\} \) and \(\{x_2, x_n\} \) are not the facets of \(\Delta_2(C_n) \). So \(\Delta_2(C_n) \) is not matroid for all \(n \geq 5 \). \(\square \)

For the simplicial complexes one has the following implication:

\[
\text{Matroid} \Rightarrow \text{vertex decomposable} \Rightarrow \text{shellable} \Rightarrow \text{Cohen-Macaulay}
\]

Note that these implications are strict, but by the following theorem, for path complexes, the reverse implications are also valid.

Theorem 2.6. Let \(t \geq 3 \). Then the following conditions are equivalent:

(i) \(\Delta_t(C_n) \) is matroid;

(ii) \(\Delta_t(C_n) \) is vertex decomposable;

(iii) \(\Delta_t(C_n) \) is shellable;

(iv) \(\Delta_t(C_n) \) is Cohen-Macaulay;

(v) \(n = t \) or \(t + 1 \).

Proof. (i) \(\Rightarrow \) (ii), (ii) \(\Rightarrow \) (iii) and (iii) \(\Rightarrow \) (iv) is well-known.

(iv) \(\Rightarrow \) (v): Follows from Lemma 2.3 and Proposition 2.4.

(v) \(\Rightarrow \) (i): If \(n = t \), then \(\Delta_t(C_n) \) is a simplex which is a matroid.

If \(n = t + 1 \), then

\[
\Delta_t(C_n) = \langle \{x_1, \ldots, x_t\}, \{x_2, \ldots, x_{t+1}\}, \{x_3, \ldots, x_{t+1}, x_1\}, \ldots, \{x_{t+1}, x_1, \ldots, x_{t+1}\} \rangle.
\]
For any two facets F and G of $\Delta_t(C_n)$ one has $|F \cap G| = t - 1$. We claim that for any two facets F and G of $\Delta_t(C_n)$ and any $x_i \in F$, there exists a $x_j \in G$ such that $(F \setminus \{x_j\}) \cup \{x_i\}$ is a facet of $\Delta_t(C_n)$. We have to consider two cases. If $x_i \in F$ and $x_j \notin G$, then we choose $x_j \in G$ such that $x_j \notin F$. Thus $(F \setminus \{x_j\}) \cup \{x_j\} = G$ which is a facet of $\Delta_t(C_n)$.

For other case, if $x_i \in F$ and $x_j \in G$, then we choose $x_j \in G$ such that x_j is the same x_i. Therefore $(F \setminus \{x_i\}) \cup \{x_j\} = F$ is a facet of $\Delta_t(C_n)$ which completes the proof.

\[\square \]

3 Stanley Decompositions

Let R be any standard graded K-algebra over an infinite field K, i.e., R is a finitely generated graded algebra $R = \bigoplus_{i \geq 0} R_i$ such that $R_0 = K$ and R is generated by R_1. There are several characterizations of the depth of such an algebra. We use the one that depth(R) is the maximal length of a regular R-sequence consisting of linear forms. Let $x_F = \cap_{i \in F} x_i$ be a squarefree monomial for some $F \subseteq [n]$ and $Z \subseteq \{x_1, \ldots, x_n\}$. The K-subspace $x_FK[Z]$ of $S = K[x_1, \ldots, x_n]$ is the subspace generated by monomials x_Fu, where u is a monomial in the polynomial ring $K[Z]$. It is called a squarefree Stanley space if $\{x_i : i \in F\} \subseteq Z$. The dimension of this Stanley space is $|Z|$. Let Δ be a simplicial complex on $\{x_1, \ldots, x_n\}$. A squarefree Stanley decomposition D of $K[\Delta]$ is a finite direct sum $\bigoplus_i u_iK[Z]$ of squarefree Stanley spaces which is isomorphic as a \mathbb{Z}^n-graded K-vector space to $K[\Delta]$, i.e.

\[K[\Delta] \cong \bigoplus_i u_iK[Z] \]

We denote by sdepth(D) the minimal dimension of a Stanley space in D and we define sdepth$(K[\Delta]) = \max\{\text{sdepth}(D)\}$, where D is a Stanley decomposition of $K[\Delta]$. Stanley conjectured in [10] the upper bound for the depth of $K[\Delta]$ as the following:

\[\text{depth}(K[\Delta]) \leq \text{sdepth}(K[\Delta]) \]

Also we recall another conjecture of Stanley. Let Δ be again a simplicial complex on $\{x_1, \ldots, x_n\}$ with facets G_1, \ldots, G_t. The complex Δ is called partitionable if there exists a partition $\Delta = \bigcup_{i=1}^t [F_i, G_i]$ where $F_i \subseteq G_i$ are suitable faces of Δ. Here the interval $[F_i, G_i]$ is the set of faces $\{H \in \Delta : F_i \subseteq H \subseteq G_i\}$. In [11] and [12] respectively Stanley conjectured each Cohen-Macaulay simplicial complex is partitionable. This conjecture is a special case of the previous conjecture. Indeed, Herzog, Soleyman Jahan and Yassemi [7] proved that for Cohen-Macaulay simplicial complex Δ on $\{x_1, \ldots, x_n\}$ we have that depth$(K[\Delta]) \leq \text{sdepth}(K[\Delta])$ if and only if Δ is partitionable.

Since each vertex decomposable simplicial complex is shellable and each shellable complex is partitionable. Then as a consequence of our results we obtain:

Corollary 3.1. if $n = t + 1$ then $\Delta_t(C_n)$ is partitionable and Stanley’s conjecture holds for $K[\Delta_t(C_n)]$.

Acknowledgment. The authors are deeply grateful to the referee for careful reading of the manuscript and helpful suggestions.
References