Dynamics of Superior Anti-fractals in a New Orbit

Mandeep Kumari* and Renu Chugh1

*1 Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India.
E-Mail:kumarimandeep28@gmail.com

ABSTRACT. Anti-fractals have interesting features in the complex graphics of dynamical system. The aim of this paper is to visualize Superior tricorns and multicorns using a new iteration introduced by M. Abbas et al.[8] and study the pattern among the anti-fractals in the complex dynamics of anti-polynomial $z \rightarrow z^m + c$, for $m \geq 2$.

1 Introduction

Fractals are defined as objects that appear to be broken into number of pieces and each piece is a copy of the entire shape. Fractal is the word taken from the Latin word fractus which means broken. The term fractal was first used by a young mathematician, Julia [5] in 1918. Julia introduced the concept of iterative function system (IFS) and derived the Julia set in 1919. After that, in 1982, Mandelbrot [2] extended the work of Gaston Julia and introduced the Mandelbrot set, a set of all connected Julia sets. Many researchers have studied Julia and Mandelbrot sets from different aspects.

The polynomials $z \rightarrow z^m + c$, for $m \geq 2$, have been studied mathematically using one step feedback process. Crowe et. al.[15] considered it as a formal analogy with Mandelbrot sets and named it as Mandelbar set. They also brought their bifurcation features along arcs rather than at points. Multicorns have been found in a real slice of the cubic connectedness locus [15]. Winter[13] showed that the boundary of the tricorn contains arc. The symmetries of tricorn and multicorns have been analyzed by Lau and Schleicher[4]. In 2003, Nakane and Schleicher[14] presented beautiful figures and quoted that multicorns are the generalized tricorns or the tricorns of higher order.

* Corresponding Author.
Received September 02, 2017; revised October 12, 2017; accepted October 18, 2017.
2010 Mathematics Subject Classification: 37F45, 37F50.
Key words and phrases: Complex polynomials, Superior anti-fractals, tricorn, multicorn, new orbit.
This is an open access article under the CC BY license http://creativecommons.org/licenses/by/3.0/.
The dynamics of anti-holomorphic complex polynomials \(z \rightarrow z^m + c \), for \(m \geq 2 \), was studied and explored to visualize interesting tri-corns and multi-corns anti-fractals with respect to one-step feedback process\[12\], two step-feedback process \[10, 11\], three-step feedback process\[16\] and four step feedback process\[1, 3\]. In this paper we generate a new class of tricorns and multicorns using a new four-step feedback process\[8\] and analyze them.

2 Preliminaries and notations

Definition 2.1[12]. The multicorns \(A_c \) for the quadratic function \(A_c(z) = z^m + c \) is defined as the collection of all \(c \in \mathbb{C} \) for which the orbit of the point 0 is bounded, that is

\[
A_c = \{ c \in \mathbb{C} : A_c^n(0) \text{ do not tend to } \infty \}
\]

(2.1)

where \(\mathbb{C} \) is a complex space. \(A_c^n \) is the \(n \)th iterate of the function \(A_c(z) \). An equivalent formulation is that the connectedness of loci for higher degree anti-holomorphic polynomials \(A_c(z) = z^m + c \) are called multicorns.

Note that at \(m = 2 \), multicorns reduce to tricorn. Naturally, the tricorns lives in the real slice \(d = c \) in the two dimensional parameter space of maps \(z \rightarrow (z^2 + d)^2 + c \). They have \((m+1)\)-fold rotational symmetries. Also, by dividing these symmetries, the resulting multicorns are called unicorns \[14\].

Definition 2.2[6]. The filled in Julia set of the function \(g \) is defined as

\[
K(g) = \{ z \in \mathbb{C} : g^k(z) \text{ does not tend to } \infty \},
\]

where \(\mathbb{C} \) is the complex space, \(g^k(z) \) is \(k \)th iterate of function \(g \) and \(K(g) \) denotes the filled Julia set. The Julia set of the function \(g \) is defined to be the boundary of \(K(g) \), i.e., \(J(g) = \partial K(g) \), where \(J(g) \) denotes the Julia set.

Definition 2.3[12]. The Mandelbrot set \(M \) consists of all parameters \(c \) for which the filled Julia set of \(Q_c \) is connected, that is

\[
M = \{ c \in \mathbb{C} : K(Q_c) \text{ is connected} \}.
\]

In fact, \(M \) contains an enormous amount of information about the structure of Julia sets. The Mandelbrot set \(M \) for the Quadratic \(Q_c(z) = z^2 + c \) is defined as the collection of all \(c \in \mathbb{C} \) for which the orbit of the point 0 is bounded, that is

\[
M = \{ c \in \mathbb{C} : \{ Q_c^n \} ; n = 0, 1, 2, .. \text{is bounded} \}.
\]

We choose the initial point 0 as 0 is the only critical point of \(Q_c \).

Now, we give definition of the new orbit, which will be used in the paper to implement four-step feedback process in the dynamics of polynomial \(z \rightarrow z^m + c \).

Definition 2.4[8]. Let us consider a sequence \(\{ x_n \} \) of iterates for initial point \(x_0 \in X \) such that

\[
\begin{align*}
x_{n+1} : x_{n+1} &= (1 - \alpha_n) Ty_n + \alpha_n Tz_n; \\
y_n &= (1 - \beta_n) Tx_n + \beta_n Tz_n; \\
z_n &= (1 - \gamma_n)x_n + \gamma_n Tx_n; & n = 0, 1, 2, ..
\end{align*}
\]

(2.2)
where $\alpha_n, \beta_n, \gamma_n \in [0, 1]$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences of positive numbers. Then the sequence (1) is a function (New Orbit) of five tuples $(T, x_0, \alpha_n, \beta_n, \gamma_n)$.

For visualizing new Superior anti-fractals, the required escape criterion with respect to the new orbit for $z \rightarrow z^m + c$ is $\max\{ |c|, (2/\alpha)^{m-1}, (2/\beta)^{m-1}, (2/\gamma)^{m-1} \}$[7].

3 Multicorns in New Orbit

In this section, we programmed the polynomial $z \rightarrow z^m + c$ in the software Mathematica 9.0 and generate Superior tricorns and multicorns in a new orbit (see Figs. 1-14).

We find the following observations from generated Superior multicorns:

- The number of branches in the Superior tricorns and multicorns is $m + 1$, where m is the power of z. Also, few branches have m subbranches (see Figs. 6, 7).
- Superior Multicorns exhibit $(m + 1)$-fold rotational symmetries.
- There exist many Superior multicorns for any m.
- We also find that higher degree Superior multicorns become circular saw (Figs. 13-14).

Some authors [1,3,11] had also found the similar conclusion while generating multicorns using two-step, three-step, four-step feedback processes. The name circular saw was, first, given by Rani and Kumar to Mandelbrot sets [9].

3.1 Superior Tricorns for $m = 2$:

Figure 1: $\alpha = \beta = 0.3, \gamma = 0.1$

Figure 2: $\alpha = \beta = 0.3, \gamma = 0.1$

Figure 3: $\alpha = \beta = \gamma = 0.3$
3.2 Superior Multicorns for $m = 3$:

Figure 4: $\alpha = 0.1, \beta = 0.9, \gamma = 0.1$

Figure 5: $\alpha = \beta = 0.9, \gamma = 0.1$

Figure 6: $\alpha = \beta = 0.6, \gamma = 0.1$

Figure 7: $\alpha = 0.1, \beta = \gamma = 0.6$

Figure 8: $\alpha = 0.6, \beta = 0.1, \gamma = 0.6$

Figure 9: $\alpha = 0.1, \beta = \gamma = 0.9$
3.3 Superior Multicorns for higher degrees:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure10.png}
\caption{Figure 10: $m = 4, \alpha = 0.1, \beta = 0.9, \gamma = 0.1$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure11.png}
\caption{Figure 11: $m = 6, \alpha = 0.6, \beta = 0.1, \gamma = 0.6$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure12.png}
\caption{Figure 12: $m = 10, \alpha = 0.6, \beta = 0.1, \gamma = 0.6$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure13.png}
\caption{Figure 13: Circular saw multicorn for $m = 50, \alpha = \beta = 0.6, \gamma = 0.1$}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure14.png}
\caption{Figure 14: Circular saw multicorn for $m = 100, \alpha = \beta = 0.6, \gamma = 0.1$}
\end{figure}

4 New Superior Anti-Julia Sets

Superior Anti Julia sets have been generated for $z \rightarrow z^m + c$ in a new orbit. In Figures 15-17, we can see that the Superior Anti Julia sets look like Superior tricorns or multicorns for $m = 2$. Also, we observed that the higher degree Superior anti Julia sets took different shapes for different values of m, α, β, γ and c.
Figure 15: Superior AntiJulia set for $m = 2, \alpha = 0.4, \beta = 1.0, \gamma = 1.0, c = 0.3 + 0.5i$

Figure 16: Superior AntiJulia set for $m = 2, \alpha = \beta = \gamma = 0.5, c = 0.3 + 0.5i$

Figure 17: Superior AntiJulia set for $m = 2, \alpha = \beta = \gamma = 0.5, c = 0.1 + 0.1i$

Figure 18: Superior AntiJulia set for $m = 3, \alpha = \beta = \gamma = 0.4, c = 0.7 + 0.7i$

Figure 19: Superior AntiJulia set for $m = 3, \alpha = \beta = 0.1, \gamma = 0.05, c = 0.6 + 0.5i$
5 Conclusion

In the dynamics of anti-polynomials $z \rightarrow z^m + c$, where $m \geq 2$, there exist many Superior multicom for the same value of m in the new orbit. We also generate some Superior Anti- Julia sets in the new orbit. In our results, we
found that for higher degrees of the polynomial, all the Superior anti-fractals become circular saw.

References

