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ABSTRACT. Let G = (V, E) be a simple connected graph. An ordered subset W of V is said to be a resolving set of G if every

vertex is uniquely determined by its vector of distances to the vertices in W. The minimum cardinality of a resolving set is

called the resolving number of G and is denoted by r(G). As an extension, the total resolving number was introduced in [6] as the

minimum cardinality taken over all resolving sets in which 〈W〉 has no isolates and it is denoted by tr(G). In this paper, we ob-

tain the bounds on the total resolving number of subdivision graphs and total graphs. Also, we characterize the extremal graphs.

1 Introduction
Let G = (V, E) be a finite, simple, connected and undirected graph. The degree of a vertex v in a graph G is the

number of edges incident to v and it is denoted by d(v). The maximum degree in a graph G is denoted by ∆(G)

and the minimum degree is denoted by δ(G). The distance d(u, v) between two vertices u and v in G is the length

of a shortest u-v path in G. The maximum value of distance between vertices of G is called its diameter. Pn denote

the path on n vertices. Cn denote the cycle on n vertices. Kn denote the complete graph on n vertices. A graph is

acyclic if it has no cycles. A tree is a connected acyclic graph. A spider is a tree with one vertex of degree at least 3

and all others with degree at most 2. A complete bipartite graph is denoted by Ks,t. A star is denoted by K1,n−1. A

tree obtained by joining the centres of two stars K1,s and K1,t by an edge is called a bistar and it is denoted by Bs,t.

For a cut vertex v of a connected graph G, suppose that the disconnected graph G \ {v} has k components

G1, G2, . . . , Gk (k ≥ 2). The induced subgraphs Bi = G[V(Gi) ∪ {v}] are connected and referred to as the brances

of G at v. A cut vertex v is a path support if there is a nontrivial path as a branch at v; a simple path support if there is
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exactly one path support at v; a multi path support if there are more than one path support at v. A graph contains

exactly one cycle is called a unicyclic graph. To identify non adjacent vertices x and y of a graph G is to replace these

vertices by a single vertex which is incident to all the edges which were incident in G to either x or y. A (k, l)-kite

is a graph obtained by identifying any vertex of a cycle Ck with an end vertex of a path Pl . A partition of a set A is

a list A1, A2, . . . , Ak of subsets of A such that each element of A appears in exactly one subset in the list.

A vertex of degree at least 3 in a graph G is called a major vertex of G. Any end vertex u of G is said to be a

terminal vertex of a major vertex v of G if d(u, v) < d(u, w) for every other major vertex w of G. The terminal degree

ter(v) of a major vertex v is the number of terminal vertices of v. A major vertex v of G is an exterior major vertex

of G if it has positive terminal degree. Let σ(G) be the sum of the terminal degrees of the major vertices of G and

ex(G) be the number of exterior major vertices of G. Let θ(G) be the number of exterior major vertices of G with

terminal degree at least two.

If W = {w1, w2, ..., wk} ⊆ V(G) is an ordered set, then the ordered k-tuple (d(v, w1), d(v, w2), ..., d(v, wk)) is

called the representation of v with respect to W and it is denoted by r(v|W). Since the representation for each

wi ∈ W contains exactly one 0 in the ith position, all the vertices of W have distinct representations. W is called

a resolving set for G if all the vertices of V \W also have distinct representations. The minimum cardinality of

a resolving set is called the resolving number of G and it is denoted by r(G). In [6] we introduced and studied

total resolving number. If W is a resolving set and the induced subgraph 〈W〉 has no isolates, then W is called a

total resolving set of G. The minimum cardinality taken over all total resolving sets of G is called the total resolving

number of G and is denoted by tr(G).

In this paper, we obtain the bounds on the total resolving number of subdivision graphs and total graphs.

Also, we characterize the extremal graphs.

2 Total Resolving Number of Graphs

The following results are used in subsequent sections.

Observation 2.1. [6] Let {w1, w2} ⊂ V(G) be a total resolving set in G. Then the degrees of w1 and w2 are at most 3.

Theorem 2.2. [6] For n ≥ 3, tr(Pn) = 2 and tr(Cn) = 2.

Observation 2.3. [6] Let G a graph of order n ≥ 3. Then 2 ≤ tr(G) ≤ n− 1.

Observation 2.4. [6] Let G be a unicyclic graph with even cycle Ck. Then tr(G) = 2 if and only if at most two adjacent

vertices of Ck are simple path supports and no vertex of G is a multi path support.

Theorem 2.5. [6] If T is a tree that is not a path, then tr(T) = σ(T)− ex(T) + θ(T).

Notation 2.6. [7] Let G be the collection of graphs G such that G is the union of two distinct paths P1 : x1x2 . . . xr,

P2 : y1y2 . . . ys, r ≤ s and x1y1 ∈ E(G), xiyi ∈ E(G) for at least one i, 2 ≤ i ≤ r.

Theorem 2.7. [7] If G is a bipartite graph that is not a path, then tr(G) = 2 if and only if G ∈ G .
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3 Subdivision Graphs

In this section, we obtain the bounds for the total resolving number of subdivision graph of a general graph

and characterize the extremal graphs.

Definition 3.1. The subdivision graph S(G) of a graph G is the graph obtained from G by deleting every edge uv of G and

replacing it by a vertex w of degree 2 that is joined to u and v.

By Theorems 2.2 and 2.5, we have the following Observation.

Observation 3.2. For n ≥ 3,

(i)tr(S(Pn)) = tr(Pn) = 2

(ii)tr(S(Cn)) = tr(Cn) = 2

(iii)tr(S(T)) = tr(T) = σ(T)− ex(T) + θ(T).

Theorem 3.3. Let G be a graph of order n ≥ 3. Then 2 ≤ tr(S(G)) ≤ n− 1.

Proof. By Observation 2.3, tr(S(G)) ≥ 2. Next, we claim that tr(S(G)) ≤ n− 1. We consider the following two

cases.

Case 1 : ∆(G) = n− 1.

Let V(G) = {v1, v2, . . . , vn}, where d(v1) = n − 1. Let vij be the new vertex of the edge vivj in S(G). Let

W = {v1} ∪ {v12, v13, . . . , v1(n−1)}. Then the first coordinate of the representation of vin is 1 and others are 2, first

coordinate of the representation of vn is 2 and others are 3, for 2 ≤ i 6= j ≤ n− 1, ith and jth coordinates of the

representation of vij are 2 and vivj ∈ E(G) and for 2 ≤ i ≤ n− 1, ith coordinate of the representation of vin is 1

and vivn ∈ E(G). It follows that W is a resolving set of S(G). Since 〈W〉 has no isolates, tr(S(G)) ≤ n− 1.

Case 2 : ∆(G) ≤ n− 2.

If n = 3 or 4, then we can easily verify that tr(S(G)) ≤ n− 1. So we may assume that n ≥ 5. Let V1, V2, . . . , Vk

be the partition of V(G) and |Vi| = ri, where Vi = {vi1, vi2, . . . , viri} and vi1 is adjacent to all vertices of Vi for all

1 ≤ i ≤ k. Since ∆(G) ≤ n− 2, k ≥ 2. Now, let |V1| ≥ 3 and |Vi| ≥ 2 for all 2 ≤ i ≤ k. Let vij be the new vertex of the

edge vivj in S(G). Let W = {vi1 / 1 ≤ i ≤ k}∪{v(11)(1i) / 2 ≤ i ≤ r1− 1}∪{v(i1)(i2), v(i1)(i3), . . . , v(i1)(iri) / 2 ≤ i ≤

k}. We claim that W is a resolving set of S(G). Let x, y be two distinct vertices of V(S(G)) \W. Let Xi = V(S 〈Vi〉),

1 ≤ i ≤ k. If x, y ∈ Xi, then r(x|W ∩ Xi) 6= r(y|W ∩ Xi) and hence r(x|W) 6= r(y|W). If x ∈ Xi and y ∈ Xj, i 6= j,

let A = Xi ∪ Xj. Then r(x|W ∩ A) 6= r(y|W ∩ A) and hence r(x|W) 6= r(y|W). Now, we assume that x /∈ Xi for all

1 ≤ i ≤ k. We consider the following two subcases.

Subcase 2.1 : y ∈ Xi for some 1 ≤ i ≤ k.

Without loss of generality, let y ∈ X1. If d(x, w) 6= d(y, w) for some w ∈W ∩ X1, then r(x|W) 6= r(y|W). So we

may assume that d(x, w) = d(y, w) for all w ∈ W ∩ X1. Then x is the neighbor of v11 and y = v1r1 . Since d(x) = 2,

neighbor of x other than v11 belongs to Xi for some 2 ≤ i ≤ k. Without loss of generality, let X2 be such set. Then

d(x, w) > d(y, w) for all w ∈W ∩ X2 and hence r(x|W) 6= r(y|W).

Subcase 2.2 : y /∈ Xi for all 1 ≤ i ≤ k.
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Since d(x) = d(y) = 2 in S(G), let N(x) = {x1, x2} and N(y) = {y1, y2}. Then x1, x2, y2 and y2 are in union of

two, three or four partite sets of V(G). Without loss of generality, let x1, x2, y1, y2 ∈ V1 ∪V2 ∪V3 ∪V4. If x1, y1 ∈ V1,

x2 ∈ V2 and y2 ∈ V3 or x1 ∈ V1, y1 ∈ V2, x2 ∈ V3 and y2 ∈ V4, then r(x|W ∩ X1) 6= r(y|W ∩ X1). It follows that

r(x|W) 6= r(y|W). Let x1, y1 ∈ V1 and x2, y2 ∈ V2 and B = X1 ∪ X2. If x1 6= y1 and x2 6= y2, then r(x|A) 6= r(y|A).

If x1 = y1 and x2 6= y2, then r(x|W ∩ X2) 6= r(y|W ∩ X2) and hence r(x|W) 6= r(y|W).

Thus W is a resolving set of S(G). Since 〈W〉 has no isolates and |W| = n− 1, tr(S(G)) ≤ n− 1.

Theorem 3.4. For s, t ≥ 2 and t ≥ s, tr(S(Ks,t)) = s + t− 2.

Proof. Let V(Ks,t) = S ∪ T, where S = {ui / 1 ≤ i ≤ s}, T = {vj/1 ≤ j ≤ t} and E(Ks,t) = {uivj / 1 ≤ i ≤ s, 1 ≤

j ≤ t}. Let A = S∪ T and B = E(Ks,t). Then V(S(Ks,t)) = A∪ B. Let W be a total resolving set of S(Ks,t). First, we

claim that tr(S(Ks,t)) ≥ s + t− 2.

Suppose tr(S(Ks,t)) ≤ s + t− 3. Since W is a total resolving set, either |W ∩V(A)| ≤ s− 2 and |W ∩V(B)| ≤

t− 1 or |W ∩V(A)| ≤ s− 1 and |W ∩V(B)| ≤ t− 2. If |W ∩V(A)| ≤ s− 1 and |W ∩V(B)| ≤ t− 2, then at least two

vertices of V(T) are not in W. Let v1 and v2 be such vertices. Since W is a total resolving set and |W ∩V(B)| ≤ t− 2,

neighbors of v1 and v2 are not in W. Thus r(v1|W) = r(v2|W), which is a contradiction. If |W ∩V(A)| ≤ s− 2 and

|W ∩V(B)| ≤ t− 1, then at least two vertices of V(T) and V(S) are not in W. Let v1, v2 and u1, u2 be such vertices.

Since W is a total resolving set and |W ∩ V(B)| ≤ t− 1, either neighbors of v1 and v2 or u1 and u2 are not in W.

Without loss of generality, let u1 and u2 be such vertices. Thus r(u1|W) = r(u2|W), which is a contradiction. Thus

tr(S(Ks,t)) ≥ s + t− 2. By Theorem 3.3, tr(S(Ks,t)) ≤ s + t− 2 and hence tr(S(Ks,t)) = s + t− 2.

Theorem 3.5. For n ≥ 3, tr(S(Kn)) = n− 1.

Proof. Let V(Kn) = {v1, v2, . . . , vn} and E(Kn) = {vivj / 1 ≤ i ≤ n, 2 ≤ j ≤ n, i < j}. Let M = V(Kn) and

N = E(Kn). Then V(S(Kn)) = M ∪ N. Let W be a total resolving set of S(Kn). By Theorem 3.3, tr(S(Kn)) ≤ n− 1.

Next, we claim that tr(S(Kn)) ≥ n− 1.

Suppose tr(S(Kn)) ≤ n − 2. Since W is a total resolving set, |W ∩ V(M) ≥ 1|. Since tr(S(Kn)) ≤ n − 2,

|W ∩V(N)| ≤ n− 3. If |W ∩V(M)| = 1, then without loss of generality, let v1 ∈W. Since W is a total resolving set

and |W ∩V(N)| ≤ n− 3, (W \ {v1}) ⊂ {v1v2, v1v3, . . . , v1vn} and |W \ {v1}| = n− 3. Without loss of generality,

let W \ {v1} = {v1v2, v1v3, . . . , v1vn−2}. Then r(vn−1|W) = r(vn|W), which is a contradiction. Similarly, we can

prove other cases. Thus tr(S(Kn)) ≥ n− 1.

Hence tr(S(Kn)) = n− 1.

Remark 3.6. By Observation 3.2, tr(S(K1,n−1)) = n− 1 and tr(S(Bs,t)) = s + t.

Theorem 3.7. Let G be a graph of order n ≥ 3. Then tr(S(G)) = 2 if and only if G is isomorphic to Pn or Cn or (k, l)-kite.

Proof. Assume that tr(S(G)) = 2. Since S(G) is a bipartite graph, by Theorem 2.7, we can easily verify that G

is isomorphic to Pn or Cn or (k, l)-kite. Conversely, if G ∼= Pn, then S(G) ∼= P2n−1 and hence by Theorem 2.2,

tr(S(G)) = 2. If G ∼= Cn, then S(G) ∼= C2n and hence by Theorem 2.2, tr(S(G)) = 2. If G ∼=(k, l)-kite, then

S(G) ∼= (2k, 2l)-kite and hence by Observation 2.4, tr(S(G)) = 2.
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Theorems 3.3 and 3.5 with the first part of Remark 3.6 suggest the following.

Open problem 3.8. If G is a connected graph of order n, then characterize graphs for which tr(S(G)) = n− 1.

4 Total Graphs

In this section, we obtain the bounds for the total resolving number of total graph of a general graph and

characterize the extremal graphs. Also, we determine the exact value of total resolving number of the total graph

of cycles, spiders and bistars.

Definition 4.1. The total graph T(G) of a graph G is a graph whose vertex set is V(T(G)) = V(G) ∪ E(G) and two

distinct vertices x and y of T(G) are adjacent if x and y are adjacent vertices of G or adjacent edges of G or x is a vertex

incident with edge y.

Theorem 4.2. Let G be a graph of order n ≥ 3. Then tr(T(G)) = 2 if and only if G ∼= Pn.

Proof. Let V(G) = {v1, v2, . . . , vn}. Then V(T(G)) = V(G) ∪ E(G).

Assume that tr(T(G)) = 2. Let W = {w1, w2} be a total resolving set of T(G). Then by Observation 2.1,

d(w1) ≤ 3 and d(w2) ≤ 3. First, we claim that δ(G) = 1. Suppose δ(G) ≥ 2. If n = 4, then tr(T(G)) = 3. If

n ≥ 5, then δ(G) ≥ 4. By Observation 2.1, tr(T(G)) ≥ 3, which is a contradiction. Thus δ(G) = 1. Now, we

claim that ∆(G) = 2. Suppose ∆(G) ≥ 3. Suppose G ∼= (3, l)-kite. If l = 1 or 2, then tr(T(G)) = 3. Let l ≥ 3. Let

v1v2v3v1 be the cycle of (3, l)-kite, u be the pendant and v be its neighbor. Let d(v1) = 3. Then by Observation

2.1, one vertex of W is u and another one is v. But d(v2, u) = d(v3, u) and d(v2, v) = d(v3, v). It follows that

r(v2|W) = r(v3|W), which is a contradiction. Suppose G ∼= (k, l)-kite, k ≥ 4. If l = 1 or 2, then we can easily

verify that tr(T(G)) 6= 2. Let l ≥ 3. Let v1v2v3 . . . vkv1 be the cycle Ck of (k, l)-kite and vkvk+1vk+2 . . . vn be

the path of (k, l)-kite. Then dT(G)(vn) = 2, dT(G)(vn−1) = 3 and d(vi) ≥ 4, 1 ≤ i ≤ n− 2. So W = {vn, vn−1}.

But dT(G)(v1, vn) = dT(G)(vk−1, vn) and dT(G)(v1, vn−1) = dT(G)(vk−1, vn−1). It follows that r(v1|W) = r(vk−1|W),

which is a contradiction. If G � (k, l)-kite, then we use the similar argument we get tr(T(G)) ≥ 3. Thus ∆(G) = 2.

Since δ(G) = 1, G ∼= Pn.

The converse can be easily verified.

Theorem 4.3. For n ≥ 3, tr(T(Cn)) = 3.

Proof. Let V(Cn) = {v1, v2, . . . , vn} and E(Cn) = {e1, e2, . . . , en} in which ei = vivi+1 for all 1 ≤ i ≤ n− 1 and

en = vnv1. Then V[T(Cn)] = {v1, v2, . . . , vn, e1, e2, . . . , en} and E[T(Cn)] = {eiei+1 / 1 ≤ i ≤ n− 1} ∪ ene1 ∪

{vivi+1 / 1 ≤ i ≤ n− 1} ∪ vnv1 ∪ {eivi+1 / 1 ≤ i ≤ n− 1} ∪ env1 ∪ {viei / 1 ≤ i ≤ n}.

By Theorem 4.2, tr(T(Cn)) ≥ 3. We claim that W = {v1, e1, v2} is a resolving set of T(Cn). Let x, y be two

distinct vertices of V(T(Cn)) \W. If either d(x, v1) 6= d(y, v1) or d(x, v2) 6= d(y, v2), then r(x|W) 6= r(y, W). So we

may assume that d(x, v1) = d(y, v1) and d(x, v2) = d(y, v2). Clearly, x ∈ V(Cn), y ∈ E(Cn) or x ∈ E(Cn) and y ∈

V(Cn). Without loss of generality, let x ∈ V(Cn), y ∈ E(Cn). Then xy ∈ E(T(Cn)). Clearly, d(x, e1) = d(y, e1)− 1.

It follows that r(x|W) 6= r(y|W). Thus tr(T(Cn)) ≤ 3 and hence tr(T(Cn)) = 3.
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Theorem 4.4. Let G be a spider. Then tr(T(G)) = ∆(G).

Proof. Let V(G) = {v, vi1, vi2, . . . , viri /1 ≤ i ≤ t}, where d(v) = t ≥ 3 in G and E(G) = {vvi1, vi1vi2, vi2vi3, . . . , vi(ri−1)viri / 1 ≤

i ≤ t}, where |V(G)| = r1 + r2 + . . .+ rt + 1. Then V(T(G)) = V(G) and E(T(G)) = E(G)∪{vvi2, vi1vi3, vi2vi4, vi3vi5, vi4vi6, . . . viri−2viri / 1 ≤

i ≤ t}.

Let W be a minimum total resolving set of T(G). Then we claim that W contains at least one vertex from

the set {vi1, vi2, . . . , viti} for all 1 ≤ i ≤ t with one exception. Suppose no vertex of {v11, v12, . . . , v1t1} and

{v21, v22, . . . , v2t2} belongs to W. Then r(v1i|W) = r(v2j|W) for i = j, which is a contradiction. Since W is a

minimum total resolving set, t− 1 vertices from the set {v11, v21, . . . , vt1} belong to W. Without loss of generality,

let v11, v21, . . . , v(t−1)1 belongs to W. But each coordinate of the representation of vt1 and v1 is 1. It follows that

r(vt1|W) = r(v|W). Therefore v or vt1 belongs to W. Thus tr(T(G)) ≥ t. Let W = {v, v11, v21, . . . , v(t−1)1}. We

claim that W is a resolving set of T(G). Let x, y be two distinct vertices of V(T(G)) \W. We consider the following

two cases.

Case 1 : x lies on vi1-viri path of G for some 1 ≤ i ≤ t− 1.

Then r(x|W) 6= r(y|W) for all x, y ∈ V(T(G)) \W with respect to {v, vi1}, 1 ≤ i ≤ t− 1.

Case 2 : x lies on vt1-vtrt path of G.

For 1 ≤ i ≤ t − 1, if x lies on vi1-viri path of G, then by Case 1, r(x|W) 6= r(y|W) for all x, y ∈ V \W. So

we may assume that y lies on vt1-vtrt path of G. If d(x, v) 6= d(y, v), then r(x|W) 6= r(y|W). So we may assume

that d(x, v) = d(y, v). If x lies on y-v path of G, then d(y, v11) = d(x, v11) + 1 and if y lies on x-v path of G, then

d(x, v11) = d(y, v11) + 1. So r(x|W) 6= r(y|W) for all x, y ∈ V(T(G)) \W. Therefore each vertex of V(T(G)) \W

have distinct representations and 〈W〉 has no isolates. Thus tr(T(G)) ≤ t and hence tr(T(G)) = t = ∆(G).

Theorem 4.5. For s, t ≥ 2, tr(T(Bs,t)) = s + t− 1.

Proof. Let V(Bs,t) = {u0, u1, . . . , us} ∪ {v0, v1, . . . , vt} and E(Bs,t) = {ei = u0ui / 1 ≤ i ≤ s} ∪ {es+j = v0vj / 1 ≤

j ≤ t} ∪ {es+t+1 = u0v0}. Then V[T(Bs,t)] = {u0, u1, . . . , us} ∪ {v0, v1, . . . , vt} ∪ {e1, e2, . . . , es+t+1}. If s = t = 2,

then we can easily verify that tr(Bs,t) = 3 = s + t− 1. So we may assume that either s ≥ 3 or t ≥ 3. Without loss

of generality, let t ≥ 3. Let W = {e1, e2, . . . , es−1, u0, es+1, . . . , es+t−1}. Then each coordinate of the representation

of es+t+1 is 1 and that of any other vertex is not 1;

first coordinate and last t− 1 coordinates of the representation of v0 are 1 and that of any other vertex is not 1;

only first coordinate and ith coordinate of the reprenentation of ui(1 ≤ i ≤ s− 1) are 1 and that of any other

vertex is not 1;

only (s + j)th coordinate of the representation of vj(1 ≤ j ≤ t− 1) is 1 and that of any other vertex is not 1;

last t− 1 coordinates of the representation of us are 3 and that of any other vertex is not 3;

first s coordinates and last t− 1 coordinates of the representation of es are 1 and 2 respectively and that of any

other vertex is not 1 and 2;

first coordinate and last t− 1 coordinates of the representation of vt are 2 and that of any other vertex is not 2;

first s coordinates and last t− 1 coordinates of the representation of es+t are 2 and 1 respectively and that of

any other vertex is not 2 and 1;

Thus W is a resolving set of T(Bs,t). Since 〈W〉 has no isolates, W is a total resolving set of T(Bs,t) and hence
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tr(T(Bs,t)) ≤ s + t− 1.

Next, we claim that tr(T(Bs,t)) ≥ s + t− 1. Suppose that tr(T(Bs,t)) ≤ s + t− 2. Let W be a total resolving set

of T(Bs,t). Since d(ui, v) = d(uj, v) for all v ∈ V(Bs,t) \ {e1, e2, . . . , es} and d(vr, v) = d(vs, v) for all v ∈ V(Bs,t) \

{es+1, es+2, . . . , es+t}, W contains at least one vertex from {ui, ei} for all 1 ≤ i ≤ s with one exception and at least

one vertex from {vj, es+j} for all 1 ≤ j ≤ t with one exception. Therefore W ⊂ E(Bs,t). Without loss of generality,

let W = {e1, e2, . . . , es−1} ∪ {es+1, es+2, . . . , es+t−1}. Then r(es|W) = r(u0|W) and r(es+t+1|W) = r(v0|W), which

is a contradiction.

Thus tr(T(Bs,t)) ≥ s + t− 1 and hence tr(T(Bs,t)) = s + t− 1.

Theorem 4.6. Let G be a graph of order n ≥ 3 and δ(G) ≥ 2. Then tr(T(G)) ≤ n− 1.

Proof. Let V(G) = {v1, v2, . . . , vn} and E(G) = {e1, e2, . . . , em}. For i, j ∈ {1, 2, . . . , n}. Let vij be the new vertex of

the edge vivj.

By Theorems 4.2 and 4.3, tr(T(Pn)) = 2 and tr(T(Cn)) = 3. So we may assume that ∆(G) ≥ 3. Let d(vn) = r ≥

3. If G is 1-connected, then we assume vn is a cut vertex of G. Let W = {v1, v2, . . . , vn−1}. Then first r coordinates

of the representation of vn is 1 and that of any other vertex is 1, ith and jth coordinates of the representation of vij,

1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2 are 1 and that of any other vertex are not 1, ith coordinates of the representation

of vin, 1 ≤ i ≤ n − 1 is 1 and that of any other vertex is not 1. Thus each vertex of V(T(G)) \W have distinct

representations and we can easily verify 〈W〉 has no isolates. Thus tr(T(G)) ≤ n− 1.

Open problem 4.7. If G is a connected graph of order n ≥ 3 without pendant vertices, then characterize G for which

tr(T(G)) = n− 1.
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