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ABSTRACT. In this paper, we prove some fixed point theorems with the notions of compatible mappings of type(R), of type (χ)

and of type (E) using implicit relations in fuzzy metric space.

1 Introduction

It proved a turning point in the development of fuzzy mathematics when the notion of fuzzy set was introduced

by Zadeh [23]. Fuzzy set theory has many applications in applied science such as neural network theory, stability

theory, mathematical programming, modelling theory, engineering sciences, medical sciences (medical genetics,

nervous system), image processing, control theory, communication etc. There are many view points of the no-

tion of the metric space in fuzzy topology, see, e.g., Erceg [2], Deng [1], Kaleva and Seikkala[11], Kramosil and

Michalek [12], George and Veermani [3]. In this paper, we are considering the Fuzzy metric space in the sense of

Kramosil and Michalek [12].

Definition 1.1: A binary operation ∗ on [0, 1] is a t-norm if it satisfies the following conditions:

(i) ∗ is associative and commutative,

(ii) a ∗ 1 = a for every a ∈ [0, 1],

* Corresponding Author.

Received December 05, 2017; revised February 13, 2018; accepted February 15, 2018.

2010 Mathematics Subject Classification: 47H10,54H25.

Key words and phrases: Fuzzy metric space, Compatible mappings, Compatible mappings of type (R), of type (χ), of type (E).

This is an open access article under the CC BY license http://creativecommons.org/licenses/by/3.0/.

61



Pawan Kumar, Z.K.Ansari and Balbir Singh 62

(iii) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d.

Basics examples of t-norm are t-norm ∆L, ∆L(a, b) = max(a + b − 1, 0), t-norm ∆P, ∆P(a, b) = ab and t-norm

∆M, ∆M(a, b) = min{a, b}.

Definition 1.2: The 3- tuple(K, M, ∆) is called a fuzzy metric space ( in the sence of Kramosil and Michalek ) if K is

an arbitrary set , ∆ is a continuous t-norm and M is a fuzzy set on K2 × [0, ∞) satisfying the following conditions

for all p, q, r ∈ K and s, t > 0

1. M(p, q, 0) = 0, M(p, q, t) > 0,

2. M(p, q, t) = 1, all t > 0 if and only if p = q,

3. M(p, q, t) = M(q, p, t),

4. M(p, r, t + s) ≥ ∆(M(p, q, t), M(q, r, s)),

5. M(p, q, .) : [0, ∞)→ [0, 1] is left continuous.

Note that M(p, q, t) can be thought of as the degree of nearness between p and q with respect to t.

We identify p = q with M(p, q, t) = 1 for all t > 0 and M(p, q, t) = 0 with t = 0.

Definition 1.3: A sequence {pn} in (K, M, ∆) is said to be:

(i) Convergent with limitp if limn→∞ M(pn, p, t) = 1 for all t > 0

(ii) Cauchy sequence in K if given ε > 0 and λ > 0, there exists a positive integer Nε,λ such that M(pn, pm, ε) >

1− λ for all n, m ≥ Nε,λ.

(iii) Complete if every Cauchy sequence in K is convergent in K.

Fixed point theory in fuzzy metric space has been developing since the paper of Grabiec [4]. Subramanyam [21]

gave a generalization of Jungck[6] theorem for commuting mapping in the setting of fuzzy metric space.

In 1996, Jungck[8] introduced the notion of weakly compatible as follows :

Definition 1.4: Two maps f and g are said to be weakly compatible if they commute at their coincidence points.

In 1999, Vasuki [22] introduced the notion of weakly commuting as follows:

Definition 1.5: Two self-mapping f and g of a fuzzy metric space (K, M, ∆) are said to be weakly commuting if

M( f gp, g f p, t) ≥ M( f p, gp, t) for each p ∈ K and for each t > 0.

In 1994, Mishra [13] generalised the notion of weakly commuting to compatible mappings in fuzzy metric

space akin to the concept of compatible mapping in metric space.

Definition 1.6[13]: Let f and g be self-mappings from a fuzzy metric space (K, M, ∆) into itself. A pair of map

{ f , g} is said to be compatible if limn→∞ M( f gpn, g f pn, t) = 1 whenever {pn} is a sequence in K such that

limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K and for all t > 0.

In 1994, Pant [15] introduced the concept of R-weakly commuting maps in metric space. Later on, Vasuki [22]

initiated the concept of non-compatible mapping in fuzzy metric space and introduced the notion of R- weakly

commuting mapping in fuzzy metric space and proved some common fixed point theorems for these mappings.

Definition 1.7: Let f and g be self- mapping from a fuzzy metric space (K, M, ∆) into itself. Then the mappings f

and g are said to be non-compatible if limn→∞ M( f gpn, g f pn, t) 6= 1, whenever {pn} is a sequence in K such that

limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K and for all t > 0.
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In 1999, Pant [14] introduced a new continuity condition, known as reciprocal continuity as follows:

Definition 1.8[14]: Two self- mappings f and g of a fuzzy metric space (K, M, ∆) are called reciprocally continuous

if limn→∞ f gpn = f r and limn→∞g f pn = gr whenever {pn} is a sequence such that limn→∞ f pn = limn→∞gpn = r

for some r ∈ K.

If f and g are both continuous then they are obviously reciprocally continuous but the converse is need not be

true.

Recently, Pant et al.[16] generalized the notion of reciprocal continuity to weak reciprocal continuity as follows:

Definition 1.9: Two self- mappings f and g of a fuzzy metric space (K, M, ∆) are called weakly reciprocally

continuous if limn→∞ f gpn = f r and limn→∞g f pn = gr whenever {pn} is a sequence such that limn→∞ f pn =

limn→∞gpn = r for some r ∈ K.

If f and g are reciprocally continuous, then they are obviously weak reciprocally continuous but the converse is

not true.

In 2004, Rohan et al. [17] introduced the concept of compatible mappings of type (R) in a metric space as follows:

Definition 1.10[17]: Let f and g be mappings from metric space K, d into itself. Then f and g are said to be

compatible of type (R) if limn→∞d( f gpn, g f pn = 0 and limn→∞d( f f pn, ggpn = 0, whenever {pn} is a sequence

such that limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K.

In 2007, Singh and Singh et al. [20] introduced the concept of compatible mappings of type (E) in a metric space

as follows:

Definition 1.11[20]: Let f and g be mappings from metric space (K, d) into itself. Then f and g are said to be

compatible of type (E) if limn→∞ f f pn = u1 and limn→∞ggpn = limn→∞g f pn = f u1 whenever {pn} is a sequence

in K such that limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K.

In 2014, Jha et al. [5] introduced the concept of compatible mappings of type (χ) in a metric space as follows:

Definition 1.12[5]: Let f and g be mappings from metric space (K, d) into itself. Then f and g are said to be

compatible of type (χ) if limn→∞d( f f pn, gu1 = 0 and limn→∞d(ggpn, gu1) = 0, whenever {pn} is a sequence in

K such that limn→∞ f pn = u1 for some u1 ∈ K.

2 Properties of Compatible mappings of types

Recently, Kang et al.[10] introduced the notion of compatible mappings and its variants in a multiplicative metric

space. Now we introduce the notions of compatible mappings of types in the setting of a Fuzzy metric space as

follows: Definition 2.1: Let f and g be self-mapping on fuzzy metric space (K, M, ∆). Then f and g are called:

1. Compatible of type (R) if limn→∞ M( f gpn, g f pn, t) = 1, and limn→∞ M( f f pn, ggpn, t) = 1, whenever {pn}

is a sequence in K such that limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K and for all t > 0.

2. Compatible of type (χ) if limn→∞ M( f f pn, gp, t) = 1, and limn→∞ M(ggpn, f p, t) = 1, whenever {pn} is a

sequence in K such that limn→∞ f pn = limn→∞gpn = p for some p ∈ K and for all t > 0.

3. Compatible of type (E) if limn→∞ f f pn = limn→∞ f gpn = gu1, and limn→∞ggpn = limn→∞g f pn = f u1,

whenever {pn} is a sequence in K such that limn→∞ f pn = limn→∞gpn = u1 for some u1 ∈ K.
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Now we give some properties related to compatible mappings of type (R) and type (E).

Proposition 2.1: Let f and g be compatible mappings of type (R) of a Fuzzy metric space (K, M, ∆) into itself. If

f p = gp for some p ∈ K, then f gp = f f p = ggp = g f p.

Proof: Suppose that {pn} is a sequence K in defined by pn = p, n = 1, 2... for some p ∈ K and f p = gp,

then we have f pn, gpn → f p as n → ∞. Since f and g are compatible of type (R), we have, M( f gp, g f p, t) =

limn→∞ M( f gpn, g f pn, t) = 1.

Hence we have f gp = f f p. Therefore, since f p = gp, we have f gp = f f p = ggp = g f p.

Proposition 2.2: Let f and g be compatible mappings of type (R) of Fuzzy metric space (K, M, ∆) into it self.

Suppose that limn→∞ f pn = p for some p in K. Then

1. limn→∞g f pn = f p if f is continuous at p.

2. limn→∞ f gpn = gp if g is continuous at p.

3. f gp = g f p and f p = gp if f and g are continuous at p.

Proof:(a) Suppose that f is continuous at p. Since limn→∞ f pn = limn→∞gpn = p for some p in K, we have

f f pn, f gpn → fp as an n→ ∞. Since f and g are compatible mappings of type (R), we have

limn→∞ M(g f pn, f p, t) = limn→∞ M(g f pn, f gpn, t) = 1.

Therefore, limn→∞g f pn = f p.

(b) Suppose that f is continuous at p. Since limn→∞ f pn = p for some p in K, we have g f pn, ggpn → gp as an

n→ ∞. Since f and g are compatible mappings of type (R), we have

limn→∞ M( f gpn, gp, t) = limn→∞ M( f gpn, g f pn, t) = 1.

Therefore, limn→∞ f gpn = gp.

(c) Suppose that f and g are continuous at p and {pn} is a sequence in K defined by pn = p, n = 1, 2.. for some

p ∈ K. Since gpn → p as n → ∞ and f is continuous at p, by (a), g f pn → f p as n → ∞. On the other hand,

g is also continuous at p, g f pn → gp as n → ∞. Hence we have f p = gp by the uniqueness of limit and so by

Proposition2.1, f gp = f f p = ggp = g f p. This completes the proof.

Proposition 2.3: Let f and g be compatible mappings of type (E) of a Fuzzy metric space (K, M, ∆) into itself. Let

one of f and g be continuous. Suppose that limn→∞ f pn = limn→∞gpn = p for some p ∈ K. Then

(a) f p = gp and limn→∞ f f pn = limn→∞ggpn = limn→∞ f gpn = limn→∞g f pn =

(b) If there exists u1 ∈ K such that f u1 = gu1 = p, we have f gu1 = g f u1.

Proof: (a) Suppose that {pn} is a sequence in K such that limn→∞ f pn = limn→∞gpn = p for some p ∈ K. Then by

definition of compatible of type (E), we have

limn→∞ f f pn = limn→∞ f gpn = gu1.

If f is continuous, then we get

limn→∞ f f pn = f p = limn→∞ggpn = limn→∞g f pn,
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which implies that f p = gp. Also, limn→∞ f f pn = limn→∞ggpn = limn→∞ f gpn = limn→∞g f pn.

Similarly, if g is continuous, then we get the same result.

(b) Next, suppose that f u1 = gu1 = p for some u1 in K. Then f gu1 = f (gu1) = f p and g f u1 = g( f u1) = gp.

And from (a), we have f p = gp. Hence f gu1 = g f u1.

Lemma 2.1[13]: Let {pn} be a sequence in a fuzzy metric space (K, M, ∆). If there exists q ∈ (0, 1) such that

M(pn+2, pn+1, qt) ≥ M(pn+1, pn, t), t > 0, n ∈ N then {pn} is a Cauchy sequence in K.

Lemma 2.2[13]: Let (K, M, ∆) be a fuzzy metric space. If there exists q ∈ (0, 1) such that M(p, q, kt) ≥ M(p, q, t)

for all p, q ∈ K and t > 0, then p = q.

Implicit Relations:

Let F be set of all continuous functions ψ(p1, p2, p3, p4, p5, p6) : R6 → R is a non-increasing in 6th coordinate

variable satisfying the following conditions:

1. ψ(p, q, q, p, 1, ∆(p, q)) ≥ 1 or ψ(p, q, 1, 1, q, ∆(q, p)) ≥ 1 implies that p ≥ q.

2. ψ(p, 1, q, 1, 1, 1) ≥ 1 or ψ(p, 1, 1, p, 1, q) ≥ 1 implies that p ≥ q.

3. ψ(p, q, 1, 1, q, p) ≥ 1 or ψ(p, 1, 1, q, 1, p) ≥ 1 implies that p ≥ q.

4. ψ(p, q, 1, 1, 1, p) ≥ 1 or ψ(p, 1, q, 1, q, 1) ≥ 1 implies that p ≥ q.

5. ψ(p, q, 1, p, q, q) ≥ 1 implies that p ≥ q.

3 Main Results

Recently, Kang et al. [10] proved the some common fixed point theorem in a complete multiplicative metric space.

Now we prove the same in Fuzzy metric space using implicit relations.

Theorem 3.1. Let f , g, f1 and g1 be mappings of a complete Fuzzy metric space (K, M, ∆) into itself satisfying the

following conditions:

(3.1) g1(K) ⊂ f (K), f1(K) ⊂ g(K)

(3.2)

ψ

 M( f1 p, g1q, kt), M( f p, gq, t), M( f p, f1 p, t)

M(gq, g1q, kt), M( f1 p, gq, t), M( f p, g1q, (1 + k)t)

 ≥ 1

for all p, q ∈ K where k ∈ (0, 1), ψ ∈ F, t > 0.

(iii) one of the mappings f , g, f1 and g1 is continuous.

Assume that the pairs f , f1 and g, g1 are compatible of type (R), Then f , g, f1 and g1 have a unique common fixed

point in K.

Proof. Since f1(K) ⊂ g(K). Now consider a point p0 ∈ K, there exists p1 ∈ K such that f1 p0 = gp1 = q0 for this

point p1 there exists p2 ∈ K such that g1 p1 = f p2 = q1. Continuing in this way, we can define a sequence {qn} in

K such that q2n = f1 p2n = gp2n+1; q2n+1 = g1 p2n+1 = f p2n+2.
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Now we prove that {qn} is Cauchy sequence in K.

Putting p = p2n, q = p2n+1 in inequality (3.2), we have

1 ≤ ψ

 M( f1 p2n, g1 p2n+1, kt), M( f p2n, gp2n+1, t), M( f p2n, f1 p2n, t)

M(gp2n+1, g1 p2n+1, kt), M( f1 p2n, gp2n+1, t), M( f p2n, g1 p2n+1, (1 + k)t)


≤ ψ

 M(q2n, q2n+1, kt), M(q2n−1, q2n, t), M(q2n−1, q2n, t)

M(q2n, q2n+1, kt), M(q2n, q2n, t), M(q2n−1, q2n+1, (1 + k)t)


≤ ψ

 M(q2n, q2n+1, kt), M(q2n−1, q2n, t), M(q2n−1, q2n, t)

M(q2n, q2n+1, kt), M(q2n, q2n, t), ∆(M(q2n−1, q2n, t), M(q2n, q2n+1, kt))


Since the function ψ is non-increasing in the 6th coordinate variable. Using properties of implicit relations F, we

get

M(q2n, q2n+1, kt) ≥ M(q2n−1, q2n, t)

Again putting p = p2n+1, q = p2n+2, in inequality (3.2), we have

1 ≤ ψ

 M( f1 p2n+1, g1 p2n+2, kt), M( f p2n+1, gp2n+2, t), M( f p2n+1, f1 p2n+1, t)

M(gp2n+2, g1 p2n+2, kt), M( f1 p2n+1, gp2n+2, t), M( f p2n+1, g1 p2n+2, (1 + k)t)


≤ ψ

 M(q2n+1, q2n+2, kt), M(q2n, q2n+1, t), M(q2n, q2n+1, t)

M(q2n+1, q2n+2, kt), M(q2n+1, q2n+1, t), M(q2n, q2n+2, (1 + k)t)


≤ ψ

 M(q2n+1, q2n+2, kt), M(q2n, q2n+1, t), M(q2n, q2n+1, t)

M(q2n+1, q2n+2, kt), M(q2n+1, q2n+1, t), ∆(M(q2n, q2n+1, t), M(q2n+1, q2n+2, kt))


Since the function ψ is non-increasing in the 6th coordinate variable. Using properties of implicit relations F, we

get

M(q2n+1, q2n+2, kt) ≥ M(q2n, q2n+1, t)

Thus for all n ∈ N and t > 0, we have

M(qn, qn+1, kt) ≥ M(qn−1, qn, t)

Therefore, by Lemma 2.1, {qn} is a Cauchy sequence in K and hence it converges to some point r ∈ K. Conse-

quently, the subsequence { f1 p2n}, {gp2n+1}, {g1 p2n+1} and { f p2n} of {qn} also converges to r.

Now, suppose that f is continuous. Since f and f1 are compatible of type (R), by Proposition 2.1, f f p2n and

f1 f p2n converges to f r as n→ ∞. We claim that r = f r.

Putting p = f p2n, q = p2n+1, in inequality (3.2), we have

1 ≤ ψ

 M( f1 p2n, g1 p2n+1, kt), M( f f p2n, gp2n+1, t), M( f f p2n, f1 p2n, t)

M(gp2n+1, g1 p2n+1, kt), M( f1 f p2n, gp2n+1, t), M( f f p2n, g1 p2n+1, (1 + k)t)


Letting n→ ∞ we have

≤ ψ

 M( f r, r, kt), M( f r, r, t), M( f r, f r, t)

M(r, r, kt), M( f r, r, t), ∆(M( f r, r, t), M( f r, r, kt))


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Using properties of implicit relations F, we get

M( f r, r, kt) ≥ M( f r, r, t).

By lemma 2.2, f r = r.

Next we claim that r = f1r.

Putting p = r and q = p2n+1 in inequality (3.2) we have

ψ

 M( f1r, g1 p2n+1, kt), M( f r, gp2n+1, t), M( f r, f1r, t)

M(r, r, kt), M(r, r, t), M(r, r, (1 + k)t)

 ≥ 1

Letting n→ ∞ we have

ψ

 M( f1r, r, kt), M(r, r, t), M(r, f1r, t)

M(gp2n+1, g1 p2n+1, kt), M( f1r, gp2n+1, t), M( f r, g1 p2n+1, (1 + k)t)

 ≥ 1

Using properties of implicit relations F, we get

M( f1r, r, kt) ≥ M( f1r, r, t).

By lemma 2.2, f1r = r.

Since f1(K) ⊂ g(K) and hence exists a point u1 ∈ K such that r = f1r = gu1 We claim that r = g1u1.

Putting p = r and q = u1 in inequality (3.2) we have

1 ≤ ψ

 M( f1r, g1u1, kt), M( f r, gu1, t), M( f r, f1r, t)

M(gu1, g1u1, kt), M( f1r, gu1, t), M( f r, g1u1, (1 + k)t)


≤ ψ

 M(r, g1u1, kt), M(r, r, t), M(r, r, t)

M(r, g1u1, kt), M(r, r, t), ∆(M(r, r, kt), M(r, g1u1, t))


≤ ψ

 M(r, g1u1, kt), M(r, r, t), M(r, r, t)

M(r, g1u1, kt), M(r, r, t), M(r, g1u1, t)


Using properties of implicit relations F, we get

M(r, g1u1, kt) ≥ M(r, g1u1, t).

By lemma 2.2, r = g1u1.

Since g and g1 are compatible of type (R) and gu1 = g1u1 = r, by Proposition2.1, gg1u1 = g1gu1 and hence

gr = gg1u1 = g1gu1 = g1r. Also, we have from the 3.2 we have

1 ≤ ψ

 M( f1r, g1r, kt), M( f r, gr, t), M( f r, f1r, t)

M(gr, g1r, kt), M( f1r, gr, t), M( f r, g1r, (1 + k)t)


≤ ψ

 M(r, gr, kt), M(r, gr, t), M(r, r, t)

M(gr, gr, kt), M(r, gr, t), ∆(M(r, r, t), M(r, gr, kt))


Using properties of implicit relations F, we get

M(r, gr, kt) ≥ M(r, gr, t).
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By lemma 2.2, r = gr.

Hence r = gr = g1r = f r = f1r. Therefore, r is a common fixed point of f , f1, g and g1.

Similarly, we can complete the proof when g is continuous. Next, suppose that f1 is continuous. Since f and f1 are

compatible of type (R), by Proposition 2.1, f1 f1 p2n and f1 p2n converges to f1r as n→ ∞. We claim that r = f1r.

Putting p = f1 p2n and q = p2n+1, in inequality (3.2) we have

1 ≤ ψ

 M( f1 f1 p2n, g1 p2n+1, kt), M( f f1 p2n, gp2n+1, t), M( f f1 p2n, f1 f1 p2n, t)

M(gp2n+1, g1 p2n+1, t), M( f1 f1 p2n, gp2n+1, t), M( f f1 p2n, g1 p2n+1, (1 + k)t)


Letting n→ ∞

≤ ψ

 M( f1r, r, kt), M( f1r, r, t), M( f1r, f1r, t)

M(r, r, kt), M( f1r, r, t), M( f1r, r, (1 + k)t)


≤ ψ

 M( f1r, r, kt), M( f1r, r, t), M( f1r, f1r, t)

M(r, r, kt), M( f1r, r, t), ∆(M( f1r, f1r, t), M( f1r, r, kt)


Using properties of implicit relations F, we get

M( f1r, r, kt) ≥ M( f1r, r, t).

By lemma 2.2, f1r = r.

Since f1(K) ⊂ g(K) and hence exists a point v1 ∈ K such that r = f1r = gv1. We claim that r = g1v1.

Putting p = f1 p2n and q = v1, in inequality (3.2) we have

1 ≤ ψ

 M( f1 f1 p2n, g1v1, kt), M( f f1 p2n, gv1, t), M( f f1 p2n, f1 p2n, t)

M(gv1, g1v1, t), M( f1 f1 p2n, gv1, t), M( f r, g1v1, (1 + k)t)


Letting n→ ∞

≤ ψ

 M(r, g1v1, kt), M(r, r, t), M(r, r, t)

M(r, g1v1, t), M(r, r, t), ∆(M(r, r, t), M(g1v1, r, kt)


Using properties of implicit relations F, we get

M(r, g1v1, kt) ≥ M(r, g1v1, t).

By lemma 2.2, r = g1v1.

Since g and g1 are compatible of type (R) and gv1 = g1v1 = r, by Proposition 2.1,gg1v1 = g1gv1 and hence

gr = gg1v1 = g1gv1 = g1r f1 p2n. We claim that r = g1r.
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Putting p = p2n and q = r, in inequality (3.2) we have

1 ≤ ψ

 M( f1 p2n, g1r, kt), M( f p2n, gr, t), M( f p2n, f1 p2n, t)

M(gr, g1r, t), M( f1 p2n, gr, t), M( f p2n, g1r, (1 + k)t)


Letting n→ ∞

≤ ψ

 M(r, g1r, kt), M(r, g1r, t), M(r, r, t)

M(g1r, g1r, t), M(r, g1r, t), M(r, g1r, (1 + k)t)


≤ ψ

 M(r, g1r, kt), M(r, g1r, t), M(r, r, t)

M(g1r, g1r, t), M(r, g1r, t), ∆(M(r, r, t), M(r, g1r, kt))


Using properties of implicit relations F, we get

M(r, g1r, kt) ≥ M(r, g1r, t).

By lemma 2.2, g1r = r.

Since g1(K) ⊂ f (K) and hence exists a point w ∈ K such that r = f1r = f w. We claim that r = f1w.

Putting p = w and q = r, in inequality (3.2) we have

1 ≤ ψ

 M( f1w, r, kt), M( f w, gr, t), M( f w, f1w, t)

M(gr, g1r, t), M( f1w, gr, t), M( f w, g1r, (1 + k)t)


= ψ

 M( f1w, r, kt), M(r, r, t), M(r, f1w, t)

M(g1r, g1r, t), M( f1w, r, t), M(r, r, (1 + k)t)


Using properties of implicit relations F, we get

M( f1w, r, kt) ≥ M(r, f1w, t).

By Lemma 2.2, we get r = f1w Since f and f1 are compatible of type (R) and f1w = f w = r, by Proposition2.1,

f f1w = f1 f w and hence f r = f f1w = f1 f w = f1r.

Hence r = gr = g1r = f r = f1r. Therefore, r is a common fixed point of f , f1, g and g1. Similarly, we can complete

the proof when g1 is continuous.

Next we prove the following theorem for compatible mappings of type (K) and type (E).

Theorem 3.2: Let f , g, f1 and g1 and be mappings of a complete Fuzzy metric space (K, M, ∆) into itself satisfying

the following conditions (3.1), (3.2). Suppose that the pairs f , f1 and g, g1 are reciprocally continuous.

Assume that the pairs f , f1 and g, g1 are compatible of type (K). Then f , f1 and g, g1 have a unique common fixed

point in K.

Proof. Now from the proof of Theorem 3.4 we can easily prove that {qn} is Cauchy sequence in K and hence it

converges to some point r ∈ K. Consequently, the subsequence { f1 p2n}, {gp2n+1}, {g1 p2n+1} and { f p2n} of {qn}

also converges to r.

Since the pairs f , f1 and g, g1 and are compatible of type (K), we have f f p2n → f1r, f1 f1 p2n → f r and ggp2n →

g1r, g1g1 p2n → gr as n→ ∞. We claim that gr = f r.
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Putting p = f1 p2n and q = g1 p2n+1 in inequality (3.2) we have

1 ≤ ψ

 M( f1 f1 p2n, g1g1 p2n+1, kt), M( f f1 p2n, gg1 p2n+1, t), M( f f1 p2n, f1 f1 p2n, t)

M(gg1 p2n+1, g1g1 p2n+1, kt), M( f1 f1 p2n, gg1 p2n+1, t), M( f f1 p2n, g1 p2n+1, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M( f r, gr, kt), M( f r, gr, t), M( f r, f r, t)

M(gr, gr, kt), M( f r, f r, t), M( f r, gr, (1 + k)t)


≤ ψ

 M( f r, gr, kt), M( f r, gr, t), M( f r, f r, t)

M(gr, gr, kt), M( f r, f r, t), ∆(M( f r, f r, t), M( f r, gr, kt))


Using properties of implicit relations F, we get

M( f r, gr, kt) ≥ M( f r, gr, t).

By Lemma 2.2, we get f r = gr.

Putting p = r and q = g1 p2n+1 in inequality (3.2) we have

1 ≤ ψ

 M( f1r, g1g1 p2n+1, kt), M( f r, g1 p2n+1, t), M( f r, f1r, t)

M(gg1 p2n, g1g1 p2n+1, kt), M( f1r, gg1 p2n+1, t), M( f r, g1g1 p2n+1, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M( f1r, gr, kt), M(gr, gr, t), M(gr, f1r, t)

M(gr, gr, kt), M( f1r, gr, t), M(gr, gr, (1 + k)t)


Using properties of implicit relations F, we get

M( f1r, gr, kt) ≥ M( f1r, gr, t).

By Lemma 2.2, we get f1r = gr.

We claim that f1r = g1r Putting p = r and q = r in inequality (3.2) we have

1 ≤ ψ

 M( f1r, g1r, kt), M( f r, gr, t), M( f r, f1r, t)

M(gr, g1r, kt), M( f1r, gr, t), M( f r, g1r, (1 + k)t)


≤ ψ

 M( f1r, g1r, kt), M(gr, gr, t), M( f r, f r, t)

M( f1r, g1r, kt), M( f1r, f1r, t), ∆(M( f1r, f1r, kt), M( f1r, g1r, t))


Using properties of implicit relations F, we get

M( f1r, g1r, kt) ≥ M( f1r, g1r, t).
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By Lemma 2.2, we get f1r = g1r.

We claim that r = g1r Putting p = p2n and q = r in inequality (3.2) we have

1 ≤ ψ

 M( f1 p2n, g1r, kt), M( f p2n, gr, t), M( f p2n, f1 p2n, t)

M(gr, g1r, kt), M( f1 p2n, gr, t), M( f p2n, g1r, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M(r, g1r, kt), M(r, g1r, t), M(r, r, t)

M(r, g1r, kt), M(r, g1r, kt), M(r, g1r, (1 + k)t)


≤ ψ

 M(r, g1r, kt), M(r, g1r, t), M(r, r, t)

M(r, g1r, kt), M(r, g1r, kt), ∆(M(r, r, kt), M(r, g1r, t))


Using properties of implicit relations F, we get

M(r, g1r, kt) ≥ M(r, g1r, t).

By Lemma 2.2, we get r = g1r.

Hence r = gr = g1r = f r = f1r. Therefore, r is a common fixed point of f , f1, g and g1.

Theorem 3.6. Let f , f1, g and g1 be mappings of a complete Fuzzy metric space (K, M, ∆) into itself satisfying the

following conditions (3.1), (3.2). Suppose that one of f and f1 is continuous and one of g and g1 is continuous.

Assume that the pairs f , f1 and g, g1 are compatible of type (E), Then f , f1, g and g1 have a unique common fixed

point in K.

Proof. Now from the proof of Theorem 3.4 we can easily prove that {qn} is Cauchy sequence in K and hence it

converges to some point r ∈ K. Consequently, the subsequence { f1 p2n}, {gp2n+1}, {g1 p2n+1} and { f p2n} of {qn}

also converges to r. Now, suppose that one of the mappings f and f1 is continuous. Since f and f1 are compatible

of type E by Proposition 2.3, f r = f1r. Since f1(K) ⊂ g(K) and hence exists a point w ∈ K such that f1r = gw.

We claim that f1r = g1w.

Putting p = r and q = w in inequality (3.2) we have

1 ≤ ψ

 M( f1r, g1w, kt), M( f r, gw, t), M( f r, f1r, t)

M(gw, g1w, kt), M( f1r, gw, t), M( f r, g1w, (1 + k)t)


≤ ψ

 M( f1r, g1w, kt), M( f r, f1r, t), M( f1r, f1r, t)

M( f1r, g1w, kt), M( f1r, gw, t), ∆(M( f1r, f1r, kt), M( f1r, g1w, kt))


Using properties of implicit relations F, we get

M( f1r, g1w, kt) ≥ M( f1r, g1r, t).

By Lemma 2.2, we get f1r = g1w.

Thus we have f r = f1r = g1w = gw. We claim that f1r = r Putting p = r and q = p2n+1 in inequality (3.2) we
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have

1 ≤ ψ

 M( f1r, g1 p2n+1, kt), M( f r, gp2n+1, t), M( f r, f1r, t)

M(gp2n+1, g1 p2n+1, kt), M( f1r, gp2n+1, t), M( f r, g1 p2n+1, (1 + k)t)


≤ ψ

 M( f1r, r, kt), M( f1r, r, t), M(r, r, t)

M(r, r, kt), M( f1r, r, t), ∆(M( f1r, f1r, kt), M( f1r, r, t))


Using properties of implicit relations F, we get

M( f1r, r, kt) ≥ M( f1r, r, t).

By Lemma 2.2, we get r = f1r.

Hence r = gr = g1r = f1r = f r. Therefore, r is a common fixed point of f , f1, g and g1.

Again, suppose g and g1 are compatible of type (E) and one of the mappings g and g1 is continuous. Then

gw = g1w = r. By Proposition 2.3, we have ggw = gg1w = g1gw = g1g1w. Hence gr = g1r.

We claim that r = g1r.

Putting p = p2n and q = r in inequality (3.2) we have

1 ≤ ψ

 M( f1 p2n, g1r, kt), M( f p2n, gr, t), M( f p2n, f1 p2n, t)

M(gr, g1r, kt), M( f1 p2n, gr, t), M( f p2n, g1r, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M( f1r, r, kt), M( f1r, r, t), M( f1r, f1r, t)

M(r, r, kt), M( f1r, r, t), ∆(M( f1r, f1r, kt), M( f1r, r, t))


Using properties of implicit relations F, we get

M( f1r, r, kt) ≥ M( f1r, r, t).

By lemma 2.2, f1r = r.

Since f1(K) ⊂ g(K) and hence exists a point v ∈ K such that r = f1r = gv. We claim that r = g1v.

Putting p = f1 p2n and q = v, in inequality (3.2) we have

1 ≤ ψ

 M( f1 f1 p2n, g1v, kt), M( f f1 p2n, gv, t), M( f f1 p2n, f1 p2n, t)

M(gv, g1v, kt), M( f1 f1 p2n, gv, t), M( f r, g1v, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M(r, g1v, kt), M(r, r, t), M(r, r, t)

M(r, g1v, kt), M(r, r, t), ∆(M(r, r, kt), M(r, g1v, t))


Using properties of implicit relations F, we get

M(r, g1v, kt) ≥ M(r, g1v, t).

By Lemma 2.2, we get r = f1r.

Hence r = g1v. Since g and g1 are compatible of type (R) and gv = g1v = r. By Proposition 2.3, we have
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gg1v = g1gv and hence gr = gg1v = g1gv = g1r.

We claim that r = g1r.

Putting p = p2n and q = r in inequality (3.2) we have

1 ≤ ψ

 M( f1 p2n, g1r, kt), M( f p2n, gr, t), M( f p2n, f1 p2n, t)

M(gr, g1r, kt), M( f1 p2n, gr, t), M( f p2n, g1r, (1 + k)t)


Letting n→ ∞,

≤ ψ

 M(r, g1r, kt), M(r, g1r, t), M(r, r, t)

M(g1r, g1r, kt), M(r, g1r, t), ∆(M(r, r, kt), M(r, g1r, t))


Using properties of implicit relations F, we get

M(r, g1r, kt) ≥ M(r, g1r, t).

By Lemma 2.2, we get g1r = r.

Hence r = gr = g1r. Therefore, r is a common fixed point of f , f1, g and g1. Similarly, we can complete the proof

when g1 is continuous. Uniqueness follows easily. This completes the proof.
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