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ABSTRACT. We present a local convergence analysis for a multi-point family of high order methods in order to approximate a

solution of a nonlinear equation in a Banach space setting. The convergence ball and error estimates are given for these methods

under Hölder continuity conditions. Numerical examples are also provided in this study.

1 Introduction

In this study we are concerned with the problem of approximating a solution x∗ of the equation

F(x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space X with values in a

Banach space Y.
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Many problems in computational sciences and other disciplines can be brought in a form like (1.1) using math-

ematical modelling [2, 3, 4, 9, 15, 16]. The solutions of these equations can rarely be found in closed form. That

is why most solution methods for these equations are iterative. The study about convergence matter of iterative

procedures is usually based on two types: semi-local and local convergence analysis. The semi-local convergence

matter is, based on the information around an initial point, to give conditions ensuring the convergence of the

iterative procedure; while the local one is, based on the information around a solution, to find estimates of the

radii of convergence balls. In particular, the practice of Numerical Functional Analysis for finding solution x∗ of

equation (1.1) is essentially connected to variants of Newton’s method. This method converges quadratically to x∗

if the initial guess is close enough to the solution. Iterative methods of convergence order higher than two such as

Chebyshev-Halley-type methods [1, 3, 4, 6]–[17] require the evaluation of the second Fréchet-derivative, which is

very expensive in general. However, there are integral equations, where the second Fréchet-derivative is diagonal

by blocks and inexpensive [8]–[11] or for quadratic equations the second Fréchet-derivative is constant [9, 10, 14].

Moreover, in some applications involving stiff systems [2], [4] high order methods are usefull. However, in gen-

eral the use of the second Fréchet-derivative restricts the use of these methods as their informational efficiency is

less than or equal to unity. That is why we study the local convergenve of multi-point methods defined for each

n = 0, 1, 2, · · · by

yn = xn − F′(xn)
−1F(xn),

zn = xn + θ(yn − xn), θ ∈ (0, 2)

Hn = H(xn, yn) =
1
θ

F′(xn)
−1[F′(zn)− F′(xn)] (1.2)

Qn = Q(xn, yn) = −
1
2

Hn(I +
1
2

Hn)
−1,

xn+1 = yn + Qn(yn − xn),

where x0 is an initial point, I the identity operator and F′(x) denotes the Fréchet derivative of the operator F.

There is a plethora of semi-local convergence results for these methods under conditions (C) [1]–[18]:

(C1) F : D → Y is twice Fréchet-differentiable and F′(x0)
−1 ∈ L(Y, X) for some x0 ∈ D such that

‖F′(x0)
−1‖ ≤ β;

(C2)

‖F′(x0)
−1F(x0)‖ ≤ η;

(C3)

‖F′′(x)‖ ≤ β1 for each x ∈ D;

(C4)

‖F′′(x)− F′′(y)‖ ≤ β2‖x− y‖p for each x, y ∈ D and some p ∈ (0, 1].

In particular, Parida and Gupta [18] provided a semilocal convergence analysis of method (1.2) but for θ ∈ (0, 1].

If p = 1 method (1.2) is shown to be of order two [9] and if p ∈ (0, 1) the order of method is 2+ p [18]. Conditions

(C3) and (C4) restrict the applicability of these methods. In our study we assume the conditions(A):
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(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that F(x∗) = 0 and F′(x∗)−1 ∈ L(Y, X);

(A2)

‖F′(x∗)−1(F′(x)− F′(x∗))‖ ≤ L0‖x− x∗‖p for each x ∈ D and some p ∈ (0, 1]

and

(A3)

‖F′(x∗)−1(F′(x)− F′(y))‖ ≤ L‖x− y‖p for each x, y ∈ D and some p ∈ (0, 1].

The convergence ball of method (1.2) and the error estimates on the distances ‖xn − x∗‖ are given in this paper.

The paper is organized as follows: In Section 2 we present the local convergence of the method (1.2). The

numerical examples are given in the concluding Section 3.

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open and closed ball in X with center

w ∈ X and of radius q > 0.

2 Local convergence

We present the local convergence of method (1.2) in this section. It is convenient for the local convergence of

method (1.2) to introduce some parameters and functions.

Define parameters r0, rA, r1, r2 and r3 by

r0 =

(
1
L0

) 1
p

, (2.1)

rA =

(
1 + p

(1 + p)L0 + L

) 1
p

, (2.2)

r1 =

(
(1 + p)(1− |1− θ|)

L|θ|+ (1− |1− θ|)(1 + p)L0

) 1
p

, (2.3)

r2 =

(
|θ|

2p−1L
+ |θ|L0

) 1
p

(2.4)

and

r3 = min{r1, r2}. (2.5)

Notice tha rA < r0, r1 < r0, r2 < r0 and r3 < r0. Define function f on [0, r3). by

f (t) =
Ltp

(1 + p)(1− L0tp)
+

2p−1Ltp

θ − (L0θ + L2p−1)tp [1 +
Ltp

(1 + p)(1− L0tp)
]− 1. (2.6)

Notice that function f is continuous on interval [0, r3) and f (t)→ ∞ as t→ r2. We also have that f (0) = −1 < 0.

Hence, it follows from the intermediate value theorem that function f has zeros in [0, r3). Denote by rs the smallest

such zero. If

r ∈ [0, rs), (2.7)

then

f (r) < 1. (2.8)

Then, we can show the following local convergence result for method (1.2) under the (A) conditions
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THEOREM 2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, hold, where r is given by (2.7). Then, sequence {xn}

generated by method (1.2) for some x0 ∈ U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and converges

to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, · · · .

‖xn+1 − x∗‖ ≤ f (‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖. (2.9)

Proof. We shall use induction to show that estimate (2.9) hold and yn, zn, xn+1 ∈ U(x∗, r) for each n = 0, 1, 2, · · · .

Using (A2) and the hypothesis x0 ∈ U(x∗, r) we have that

‖F′(x∗)−1(F′(x0)− F′(x∗))‖ ≤ L0‖x0 − x∗‖p < L0rp < 1, (2.10)

by the choice of r. It follows from (2.10) and the Banach Lemma on invertible operators [2, 5, 15] that F′(x0)
−1 ∈

L(Y, X) and

‖F′(x0)
−1F′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖p <
1

1− L0rp . (2.11)

Using (A2), (A3), F(x∗) = 0, (2.10) and the choice of rA we get from the first substep of method (1.2)

y0 − x∗ = x0 − F′(x0)
−1F(x0)

= −[F′(x0)
−1F′(x∗)][F′(x∗)−1∫ 1

0
(F′(x∗ + τ(x0 − x∗))− F′(x0))(x0 − x∗)dτ] (2.12)

that

‖y0 − x∗‖ ≤ ‖F′(x0)
−1F′(x∗)‖‖F′(x∗)−1∫ 1

0
[F′(x∗ + θ(x0 − x∗))− F′(x0)]dθ‖‖x0 − x∗‖

≤ 1
1− L0‖x0 − x∗‖p

L0‖x0 − x∗‖p

1 + p
‖x0 − x∗‖

=
L‖x0 − x∗‖1+p

(1 + p)(1− L0‖x0 − x∗‖p)

≤ Lrp‖x0 − x∗‖
(1 + p)(1− L0rp)

≤ ‖x0 − x∗‖ < r, (2.13)

which shows that y0 ∈ U(x∗, r). In view of the second substep of method (1.2) and (2.13) we get that

z0 − x∗ = x0 − x∗ + θ((y0 − x∗) + (x∗ − x0))

= (1− θ)(x0 − x∗) + θ(y0 − x∗), (2.14)

so

‖z0 − x∗‖ ≤ |1− θ|‖x0 − x∗‖+ θ‖y0 − x∗‖

≤ |1− θ|‖x0 − x∗‖+ θ
L‖x0 − x∗‖1+p

(1 + p)(1− L0‖x0 − x∗‖p)

≤ [|1− θ|+ Lθrp

(1 + p)(1− L0rp)
]‖x0 − x∗‖

≤ ‖x0 − x∗‖ < r, (2.15)
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which implies that z0 ∈ U(x∗, r). Hence, H0 is well defined. Next, we shall show that (I + 1
2 H0)

−1 exists. Using

(A3), (2.11) and the choice of r2 we get in turn that

‖1
2

H0‖ ≤ 1
2θ
‖F′(x0)

−1F′(x∗)‖‖F′(x∗)−1(F′(z0)− F′(x0))‖

≤ 1
2θ

L‖z0 − x0‖p

1− L0‖x0 − x∗‖p

≤ L(‖z0 − x∗‖+ ‖x0 − x∗‖)p

2θ(1− L0‖x0 − x∗‖p)

≤ 2pLrp

2θ(1− L0rp)
=

2p−1Lrp

θ(1− L0rp)
< 1. (2.16)

It follows from (2.16) and the Banach lemma that (I + 1
2 H0)

−1 exists and

‖(I +
1
2

H0)
−1‖ ≤ 1

1− L‖xn−zn‖p

2θ(1−L0‖xn−x∗‖p)

≤ 1

1− 2p−1 Lrp

θ(1−L0rp)

. (2.17)

Hence, x1 is well defined. We shall show that (2.9) holds for n = 0 and x1 ∈ U(x∗, r). Using the last substep of

method (1.2) for n = 0, (2.11), (2.13), (2.15), (2.16), (2.17) and (2.8) we obtain in turn that

‖x1 − x∗‖ ≤ ‖y0 − x∗‖+ ‖Q0‖(‖y0 − x∗‖+ ‖x0 − x∗‖)

≤ [
L‖x0 − x∗‖p

(1 + p)(1− L0‖x0 − x∗‖p)
+

L‖x0 − x∗‖p

2θ(1− L0‖x0 − x∗‖p)− L‖z0 − x0‖p

(1 +
L‖x0 − x∗‖p

(1 + p)(1− L0‖x0 − x∗‖p)
)]‖x0 − x∗‖

≤ f (‖x0 − x∗‖)‖x0 − x∗‖ ≤ f (r)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (2.18)

where, we also used the estimate

‖Q0‖ ≤ 1
2
‖H0‖‖(I +

1
2

H0)
−1‖

≤ L‖z0 − x0‖p

2θ(1− L0‖x0 − x∗‖p)

1

1− L‖z0−x0‖p

2θ(1−L0‖x0−x∗‖p)

≤ L‖z0 − x0‖p

2θ(1− L0‖x0 − x∗‖p)− L‖z0 − x0‖p

≤ 2pLrp

2θ − (2θL0 + 2pL)rp

≤ 2p−1Lrp

θ − (θL0 + 2pL)rp .

It then follows from (2.18) that (2.9) holds for n = 0 and x1 ∈ U(x∗, r). To complete the induction simply replace

x0, y0, x1, H0, Q0 by xk, yk, xk+1, Hk, Qk in all the preceding estimates to arrive in particular at ‖xk+1 − x∗‖ <

||xk − x∗‖ < r, which imply that xk+1 ∈ U(x∗, r) and that limk→∞ xk = x∗. �

REMARK 2.2. (a) Condition (A2) can be dropped, since this condition follows from (A3). Notice, however that

L0 ≤ L (2.19)

holds in general and L
L0

can be arbitrarily large [2]–[6].
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(b) It is worth noticing that it follows from (2.2) and (2.7) that r is such that

r < rA (2.20)

The convergence ball of radius rA was given by us in [2, 3, 5] for Newton’s method under conditions (A1)- (A3).

Estimate (2.17) shows that the convergence ball of method (1.2) is smaller than the convergence ball of the quadratically

convergent Newton’s method.

(c) The local results can be used for projection methods such as Arnoldi’s method, the generalized minimum residual

method (GMREM), the generalized conjugate method(GCM) for combined Newton/finite projection methods and in

connection to the mesh independence principle in order to develop the cheapest and most efficient mesh refinement

strategy [2]– [5], [14, 15].

(d) The results can also be used to solve equations where the operator F′ satisfies the autonomous differential equation

[2]– [5], [14, 15]:

F′(x) = T(F(x)),

where T is a known continuous operator. Since F′(x∗) = T(F(x∗)) = T(0), we can apply the results without

actually knowing the solution x∗. Let as an example F(x) = ex − 1. Then, we can choose T(x) = x + 1 and x∗ = 0.

3 Numerical Examples

We present numerical examples where we compute the radii of the convergence balls.

EXAMPLE 3.1. Let X = Y = R. Define function F on D = [1, 3] by

F(x) =
2
3

x
3
2 − x. (3.1)

Then, x∗ = 9
4 = 2.25, F′(x∗)−1 = 2, L0 = 1 < L = 2 and p = 0.5 Choose θ = 1. Then, we get that r ∈ [0, 0.1667) and

rA = 0.5.

EXAMPLE 3.2. Let X = Y = R3, D = U(0, 1). Define F on D for v = x, y, z) by

F(v) = (ex − 1,
e− 1

2
y2 + y, z). (3.2)

Then, the Fréchet-derivative is given by

F′(v) =


ex 0 0

0 (e− 1)y + 1 0

0 0 1

 .

Notice that x∗ = (0, 0, 0), F′(x∗) = F′(x∗)−1 = diag{1, 1, 1}, L0 = e− 1 < L = e, and p = 1. Choose θ = 1 then, we

get that r ∈ [0, 0.1175) and rA = 0.3249.

EXAMPLE 3.3. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1]be and equipped with the max

norm. Let D = U(0, 1). Define function F on D by

F(ϕ)(x) = ϕ(x)− 5
∫ 1

0
xτϕ(τ)3dτ. (3.3)
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We have that

F′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xτϕ(τ)2ξ(τ)dτ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15 and p = 1.

References

[1] S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equa-

tions, J. Comput. Appl. Math. 157, (2003), 197-205.

[2] I.K. Argyros, A unifying local-semilocal convergence analysis and applications for two-point Newton-like

methods in Banach spaces, J. Math. Anal. Appl., 20,8 (2004), 373-397.

[3] I.K. Argyros, Computational theory of iterative methods. Series: Studies in Computational Mathematics, 15,

Editors: C.K. Chui and L. Wuytack, Elsevier Publ. Co. New York, U.S.A, 2007.

[4] I.K. Argyros, S. Hilout, Numerical methods in Nonlinear Analysis, World Scientific Publ. Comp. New Jersey,

2013.

[5] I.K. Argyros, S. Hilout, Weaker conditions for the convergence of Newton’s method. J. Complexity 28 (2012)

364–387.

[6] V. Candela, A. Marquina, Recurrence relations for rational cubic methods I: The Halley method, Computing,

44(1990), 169-184.

[7] V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method, Com-

puting, 45(1990), 355-367.

[8] J.M. Gutiérrez, M.A. Hernández, Recurrence relations for the super-Halley method, Computers Math. Ap-

plic. 36(1998), 1-8.

[9] J.M. Gutiérrez, M.A. Hernández, Third-order iterative methods for operators with bounded second deriva-

tive, Journal of Computational and Applied Mathematics, 82(1997), 171-183.

[10] M.A. Hernández, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of

the Chebyshev method, Journal of Computational and Applied Mathematics, 126(2000), 131-143.

[11] M.A. Hernández, Chebyshev’s approximation algorithms and applications, Computers Math. Applic.

41(2001),433-455.

[12] M.A. Hernández, Reduced recurrence relations for the Chebyshev method, Journal of Optimization Theory

and Applications, 98(1998), 385-397.

[13] J. A. Ezquerro, M.A. Hernández, Avoiding the computation of the second Fréchet- derivative in the convex
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