International Journal of Advances in Mathematics Volume 2018, Number 2, Pages 42-52, 2018 eISSN 2456-6098 © adv-math.com

Some weaker forms of Continuity in Bitopological ordered spaces

M. Y. Bakier¹, A. F. Sayed^{2,*}

¹Mathematics Department, Faculty of Science, Assiut University, Assiut 71515, Egypt. *Mathematics Department, Al-Lith University College, Umm Al-Qura University, P.O. Box 112, Al-Lith 21961, Makkah Al Mukarramah, Kingdom of Saudi Arabia. *E-mail:dr.afsayed@hotmail.com

ABSTRACT. The main purpose of the present paper is to introduce and study some weaker forms of continuity in bitopological ordered spaces .Such as pairwise *I*-continuous maps, pairwise *D*-continuous maps, pairwise *B*-continuous maps, pairwise *I*-closed maps, pairwise *D*-closed maps and pairwise *B*-closed maps.

1 Introduction

Singal, M. K. and Singal, A. R. [9] initiated the study of bitopological ordered spaces. Raghavan, T. G. [7], [8] and other authors have contributed to development and construction some properties of such spaces (see,[1],[4],[3], [2], [5]). In (2002) M.K.R.S. Veera Kumar [10] introduced *I*-continuous maps, *D*-continuous maps and *B*-continuous maps, *I*-open maps, *D*-open maps, *B*-open maps, *I*-closed maps, *D*-closed maps and *B*-closed maps for topological ordered spaces together with their characterizations. Leopoldo Nachbin [6] initiated the study of topological ordered spaces in (1965). A topological ordered space is a triple (X, τ, \leq) , where τ is a topology on *X* and \leq is a partial order on *X*. In this paper we introduce pairwise *I*-continuous maps, pairwise *B*-open maps,

^{*} Corresponding Author.

Received September 14, 2017; revised January 10, 2018; accepted February 01, 2018.

²⁰¹⁰ Mathematics Subject Classification: 54F05, 54E55.

Key words and phrases: Ordered topological space, increasing sets, decreasing sets, continuous maps, pairwise continuous maps, pairwise closed maps.

This is an open access article under the CC BY license http://creativecommons.org/licenses/by/3.0/.

pairwise *I*-closed maps, pairwise *D*-closed maps and pairwise *B*-closed maps for bitopological ordered spaces together with their characterizations as a generalization of that were studied for topological ordered spaces by M.K.R.S. Veera Kumar [10].

2 Preliminaries

Let (X, \leq) be a partially ordered set (i.e. a set *X* together with a reflexive, antisymmetric and transitive relation). For a subset $A \subseteq X$, we write:

$$L(A) = \{y \in X : y \le x \text{ for some } x \in A\},\$$

$$M(A) = \{y \in X : x \le y \text{ for some } x \in A\}.$$

In particular, if *A* is a singleton set, say $\{x\}$, then we write L(x) and M(x) respectively. A subset *A* of *X* is said to be decreasing (resp. increasing) if A = L(A) (resp. A = M(A)). The complement of a decreasing (resp. an increasing) set is an increasing (resp. a decreasing) set. A mapping $f : (X, \leq) \to (X^*, \leq^*)$ from a partially ordered set (X, \leq) to a partially ordered set (X^*, \leq^*) is increasing (resp. a decreasing) if $x \leq y$ in *X* implies $f(x) \leq^* f(y)$ (resp. $f(y) \leq^* f(x)$). *f* is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [9] is a quadruple consisting of a bitopological space (X, τ_1, τ_2) , and a partial order \leq on X; it is denoted as $(X, \tau_1, \tau_2, \leq)$. The partial order \leq said to be closed (resp. weakly closed) [7] if its graph $G(\leq) = \{(x, y) : x \leq y\}$ is closed in the product topology $\tau_i \times \tau_j$ (resp. $\tau_1 \times \tau_2$) where $i, j = 1, 2; i \neq j$, or equivalently, if L(x) and M(x) are τ_1 -closed, where i = 1, 2 (resp. L(x) is τ_1 -closed and M(x) is τ_2 -closed), for each $x \in X$.

For a subset A of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$,

- $H_i^l(A) = \bigcap \{F \mid F \text{ is } \tau_i \text{-decreasing closed subset of } X \text{ containing } A \},\$
- $H_i^m(A) = \bigcap \{F \mid F \text{ is } \tau_i \text{increasing closed subset of } X \text{ containing } A \},\$
- $H_i^b(A) = \bigcap \{F \mid F \text{ is a closed subset of } X \text{ containing } A \text{ with } F = L(F) = M(F) \},$
- $O_i^l(A) = \bigcup \{ G \mid G \text{ is } \tau_i \text{-decreasing open subset of X contained in } A \},$
- $O_i^m(A) = \bigcup \{ G \mid G \text{ is } \tau_i \text{increasing open subset of } X \text{ contained in } A \},$

 $O_i^b(A) = \bigcup \{G \mid G \text{ is both } \tau_i \text{-increasing and } \tau_i \text{-decreasing open subset of } X \text{ contained in } A \}.$

Clearly, $H_i^m(A)$ (resp. $H_i^l(A)$, $H_i^b(A)$) is the smallest τ_i - increasing resp. τ_i - decreasing, both τ_i - increasing and τ_i - decreasing) closed set containing A. Moreover $\bar{A}_i \subseteq H_i^m(A) \subseteq H_i^b(A)$ and where \bar{A}_i stands for the τ_i - closure of A in $(X, \tau_1, \tau_2, \leq), i = 1, 2$. Further A is τ_i -decreasing (resp. τ_i -increasing) closed if and only if $A = H_i^m(A) = H_i^l(A)$.

Clearly, $O_i^m(A)$ (resp. $O_i^l(A), O_i^b(A)$) is the largest τ_i -increasing resp. τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open set contained in A. Moreover $O_i^b(A) \subseteq O_i^m(A) \subseteq A_i^o$ and $O_i^b(A) \subseteq O_i^l(A)$, where A_i^o denotes the τ_i -interior of A in $(X, \tau_1, \tau_2, \leq), i \neq j$. If A and B are two τ_1 subsets of a bitopological ordered space $(X, \tau_1, \tau_2, \leq), i \neq j$ such that $A \subseteq B$, then $O_i^m(A) \subseteq O_i^m(B) \subseteq B_i^o$. $\Omega(O_i^m(X))$ resp. $\Omega(O_i^l(X)), \Omega(O_i^b(X))$ denotes the collection of all τ_i -increasing (resp. τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) open subset of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$.

3 Pairwise *I*-continuous, Pairwise *D*-continuous and Pairwise *B*continuous maps

Definition 3.1. A function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$ is called a pairwise I-continuous (resp. a pairwise D-continuous, a pairwise B-continuous) map if $f^{-1}(G) \in \Omega(O_i^m(X))$ (resp. $f^{-1}(G) \in \Omega(O_i^l(X)), f^{-1}(G) \in \Omega(O_i^b(X))$), whenever G is a i-open subset of $(X^*, \tau_1^*, \tau_2^*, \leq)$, i = 1, 2.

It is evident that every pairwise x-continuous map is pairwise continuous for x = I, D, B and that every pairwise B-continuous map is both pairwise I-continuous and pairwise D-continuous.

Example 3.2. Let $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{\emptyset, X, \{c\}\} and \leq = \{(a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$. Clearly $(X, \tau_1, \tau_2, \leq)$ is a bitopological ordered space. Let f be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto itself. $\{b\}$ is τ_1 -open and $\{c\}$ is τ_2 -open but $f^{-1}(\{b\}) = \{b\}$ is neither a τ_1 -increasing nor a τ_1 -decreasing open set and also $f^{-1}(\{c\}) = \{c\}$ is neither a τ_2 -increasing nor a τ_2 -decreasing open set and . Thus f is not pairwise x-continuous for x = I, D, B. However f is continuous.

The following Example supports that a pairwise D-continuous map need not be a pairwise B-continuous map.

Example 3.3. Let $X = \{a, b, c\} = X^*, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} = \tau_1^*, \tau_2 = \{\emptyset, X, \{c\}\} = \tau_2^* \text{ and } \leq = \{(a, a), (b, b), (c, c), (a, c)\} \text{ and } \leq^* = \{(a, a), (b, b), (c, c), (a, b), (a, c), (b, c)\}.$ Let *g* be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq)$. *g* is not pairwise *B*-continuous. However *g* is a pairwise *D*-continuous map.

The following Example supports that a pairwise I-continuous map need not be a pairwise B-continuous map.

Example 3.4. Let $X = \{a, b, c\} = X^*, \tau_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}, \tau_1^* = \{\emptyset, X^*, \{a\}\}, \tau_2 = \{\emptyset, X, \{c\}\}, \tau_2^* = \{\emptyset, X, \{b\}, \{c\}, \{b, c\}\}$ and $\leq = \{(a, a), (b, b), (c, c), (a, b), (a, c), (c, b)\} = \leq^*$. Define $h : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$ by h(a) = b, h(b) = a and h(c) = c. h is pairwise I-continuous but not a pairwise B-continuous map. Thus we have the following diagram:

For a function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$

, where $P \rightarrow Q(\text{resp. } P \nleftrightarrow Q)$ represents *P* implies *Q* but*Q* need not imply *P*(resp. *P* and *Q* are independent of

Figure 1:

each other).

The following Theorem characterizes pairwise *I*-continuous maps.

Theorem 3.5. For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is pairwise I-continuous.
- (2) $f(H_i^l(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X, i = 1, 2$.
- (3) $H_i^l(f^{-1}(B) \subseteq f^{-1}(\bar{B})i \text{ for any } B \subseteq X^*, i = 1, 2.$

(4) For every τ_i^* - closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq)$, $f^{-1}(K)$ is a τ_i - decreasing closed subset of $(X, \tau_1, \tau_2, \leq)$, i = 1, 2.

Proof. (1) \Rightarrow (2): Since $X^* \setminus \overline{(f(A))_i}$ is τ_i -open in X^* and f is pairwise I-continuous, then $f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -increasing open set in X. Then $X \setminus f^{-1}(X \setminus \overline{(f(A))_i})$ is a τ_i -decreasing closed subset of X. Since $X \setminus f^{-1}(X \setminus \overline{(f(A))_i}) = f^{-1}(\overline{(f(A))_i})$, then $f^{-1}(\overline{(f(A))_i})$ is a τ_i -decreasing closed subset of X. Since $A \subseteq f^{-1}(\overline{(f(A))_i})$ and is the smallest τ_i -decreasing closed set containing A, then $H_i^l(A) \subseteq f^{-1}(\overline{(f(A))_i}).f(f^{-1}(\overline{(f(A))_i})) \subseteq \overline{(f(A))_i}$.

 $(2) \Rightarrow (3): \text{Let } A = f^{-1}(B). \text{ Then } f(A) = f(f^{-1}(B)) \subseteq B. \text{ This implies } (\overline{f(A)})_i \overline{B}_i.$ Now $H_i^l(f^{-1}(B)) \subseteq H_i^l(A) \subseteq f^{-1}(f(H_i^l(A))) \subseteq f^{-1}(\overline{f(A)})_i \text{ [By(2)in this theorem 3.5]}.$ But $f^{-1}(\overline{f(A)})_i \subseteq f^{-1}(\overline{B}_i).$ $f^{-1}(\overline{B}_i).$ Thus $H_i^l(f^{-1}(B)) \subseteq f^{-1}(\overline{B}_i).$

 $(3) \Rightarrow (4): H_i^l(f^{-1}(K)) \subseteq f^{-1}(\bar{K}_i) \text{ for any } \tau_i^* - \text{closed set } K \text{ of } (X^*, \tau_1^*, \tau_2^*, \leq). \text{ Thus } f^{-1}(K) \text{ is a } \tau_i - \text{decreasing closed in } (X, \tau_1, \tau_2, \leq) \text{ whenever } K \text{ is a } \tau_i^* - \text{closed set in } (X^*, \tau_1^*, \tau_2^*, \leq).$

(4) \Rightarrow (1): Let *G* be a τ_i^* -open set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. Then $f^{-1}(X \setminus (G))$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq)$, since $X^* \setminus (G)$ is a closed set in $(X^*, \tau_1^*, \tau_2^*, \leq)$. But $X \setminus (f^{-1}(G)) = f^{-1}(X \setminus G)$. Thus $X \setminus (f^{-1}(G))$ is a τ_i -decreasing closed set in $(X, \tau_1, \tau_2, \leq)$. So $f^{-1}(G)$ is a τ_i -increasing open set in $(X, \tau_1, \tau_2, \leq)$. Thus *f* is pairwise *I*-continuous.

The following two Theorems characterize pairwise D-continuous maps and pairwise B-continuous maps, whose proofs are similar to as that of the above Theorem 3.5.

Theorem 3.6. For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

(1) f is pairwise D-continuous.

(2) $f(H_i^m(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X, i = 1, 2$.

(3) $H_i^m(f^{-1}(B) \subseteq f^{-1}(\bar{B})$ *i* for any $B \subseteq X^*$, i = 1, 2.

(4) For every τ_i^* - closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq)$, $f^{-1}(K)$ is a τ_i - increasing closed subset of $(X, \tau_1, \tau_2, \leq)$, i = 1, 2.

Theorem 3.7. For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

(1) f is pairwise B-continuous.

(2) $f(H_i^b(A)) \subseteq \overline{(f(A))}_i$ for any $A \subseteq X, i = 1, 2$.

(3) $H_i^b(f^{-1}(B) \subseteq f^{-1}(\bar{B})i \text{ for any } B \subseteq X^*, i = 1, 2.$

(4) For every τ_i^* -closed subset K of $(X^*, \tau_1^*, \tau_2^*, \leq)$, $f^{-1}(K)$ is both τ_i -increasing and τ_i -decreasing closed subset of $(X, \tau_1, \tau_2, \leq), i = 1, 2$.

Theorem 3.8. Let $f : (X, \tau_1, \tau_2, \leq_1) \to (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \to (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. *Then*

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise *x*-continuous for x = I, D, B.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise *x*-continuous and *g* is pairwise continuous for x = I, D, B.

(3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \rightarrow (Z, \eta_1, \eta_2, \leq_3)$ is pairwise *x*-continuous and *g* is pairwise *y*-continuouss for *x*, *y* \in {*I*, *D*, *B*}.

4 Pairwise *I***-open**, **Pairwise** *D***-open** and **Pairwise** *B***-open** maps

Definition 4.1. A function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise I-open (resp. a pairwise D-open, a pairwise B-open) map if $f(G) \in \Omega(O_i^m(X^*))$ (resp. $f(G) \in \Omega(O_i^l(X^*))$, $f(G) \in \Omega(O_i^b(X^*))$) whenever G is a τ_i -open subset of (X, τ_1, τ_2) , i = 1, 2.

It is evident that every pairwise *x*-open map is a pairwise open map for x = I, D, B and that every pairwise *B*-open map is both pairwise *I*-open and pairwise *D*-open.

The following Example shows that a pairwise open map need not be pairwise x-open for x = I, D, B.

Example 4.2. Let $(X, \tau_1, \tau_2, \leq)$ and f be as in the Example 3.2. f is a pairwise open map but f is not pairwise x-open for x = I, D, B.

The following Example shows that a pairwise D-open map need not be a pairwise B-open map.

Example 4.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq and \leq^* be as in the Example 3.3. Let <math>\theta$ be the identity map from $(X, \tau_1, \tau_2, \leq)$ onto $(X^*, \tau_1^*, \tau_2^*, \leq^*)$. θ is pairwise D-open but not a pairwise B-open map.

The following Example shows that a pairwise *I*-open map need not be a pairwise *B*-open map

Example 4.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq and \leq^* be as in the Example 3.4. Define <math>\varphi : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$. by $\varphi(a) = b, \varphi(b) = a$ and $\varphi(c) = c$. φ is a pairwise I-open map but not a pairwise B-open map. Thus we have the following diagram:

For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$

, where $P \rightarrow Q$ (resp. $P \nleftrightarrow Q$) represents P implies Q butQ need not imply P(resp. P and Q are independent of

each other).

Before characterizing pairwise I-open (resp. pairwise D-open, pairwise B-open) maps, we establish the following useful Lemma.

Lemma 4.5. Let A be any subset of a bitopological ordered space $(X, \tau_1, \tau_2, \leq)$. Then

(1) $X \setminus H_i^l(A) = O_i^m(X \setminus A), i = 1, 2$ (2) $X \setminus H_i^m(A) = O_i^l(X \setminus A), i = 1, 2$ (31) $X \setminus H_i^b(A) = O_i^b(X \setminus A), i = 1, 2$

Proof. (1) $X \setminus H_i^l(A) = X \setminus (\cap \{F | F \text{ is a } \tau_i - \text{decreasing closed subset of } X \text{ containing } A \} = \bigcup \{X \setminus F | F \text{ is a } \tau_i - \text{decreasing } X \setminus F | F \text{ or } A \}$ closed subset of X containing A = \bigcup {G | G is an τ_i -increasing open subset of X contained in X \ A} = $O_i^m(X \setminus A)$. Π

The proofs for (2) and (3) are analogous to that of (1) and so omitted.

The following Theorem characterizes pairwise I-open functions.

Theorem 4.6. For any function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is pairwise I-open map.
- (2) $f((A_i^0)) \subseteq O_i^m(f(A) \text{ for any } A \subseteq X, i = 1, 2.$
- (3) $(f^{-1}(B)_i^o \subseteq f^{-1}(O_i^m(B) \text{ for any } B \subseteq X^*, i = 1, 2.$
- (4) $f^{-1}(H_i^l(B)) \subseteq H_i^l(f^{-1}(B))$ for any $B \subseteq X^*, i = 1, 2$.

Proof. (1) \Rightarrow (3): Since $(f^{-1}(B))_i^o$ is τ_i -open in X and f is pairwise I-open, then $f((f^{-1}(B))_i^o)$ is an τ_i -increasing open set in X^{*}. Also $f(f^{-1}(B))_i^o) \subseteq f(f^{-1}(B)) \subseteq B$. Then $f(f^{-1}(B))_i^o \subseteq O_i^m(B)$ since $O_i^m(B)$ is the largest τ_i -increasing open set contained in *B*. Therefore $(f^{-1}(B))_i^0 \subseteq f^{-1}(O_i^m(B))$.

(3) \Rightarrow (4): Replacing B by $X \setminus B$ in (3), we get $(f^{-1}(X \setminus B))_i^o \subseteq f^{-1}(O_i^m(X \setminus B))$. Since $f^{-1}(X \setminus B) = (A \setminus B)$ $X \setminus (f^{-1}(B))$, then $(X \setminus (f^{-1}(B)))_i^o \subseteq f^{-1}(O_i^m(X \setminus B))$. Now $X \setminus (H_i^l(f^{-1}(B))) = O_i^m(X \setminus (f^{-1}(B))) \subseteq (X \setminus B)$ $(f^{-1}(B)))_i^o \subseteq f^{-1}(O_i^m(X \setminus (B))) = f^{-1}(X \setminus (H_i^l(B))) = X \setminus (f^{-1}(H_i^l(B)))$ using the above Lemma 4.5. Therefore $f^{-1}(H_i^l(B))) \subseteq H_i^l(f^{-1}(B)).$

 $(4) \Rightarrow (3)$: All the steps in $(3) \Rightarrow (4)$ are reversible.

(3) \Rightarrow (2): Replacing *B* by f(A)in (3), we get $(f^{-1}(f(A)))_i^o \subseteq f^{-1}(O_i^m(f(A)))$. Since $A_i^o \subseteq (f^{-1}(f(A)))_i^o$, then we have $A_i^o \subseteq f^{-1}(O_i^m(f(A)))$. This implies that $f(A_i^o) \subseteq f(f^{-1}(O_i^m(f(A)))) \subseteq O_i^m(f(A))$. Hence $f(A_i^o) \subseteq O_i^m(f(A))$.

(2) \Rightarrow (1): Let *G* be any τ_i -open subset of *X*. Then $f(G) = f(G_i^o) \subseteq O_i^m(f(G))$. So f(G) is a τ_i^* -increasing open set in *X*^{*}. Therefore *f* is a pairwise *I*-open map.

The following two Theorems give characterizations for D-open maps and B-open maps, whose proofs are similar to as that of the above Theorem 4.6.

Theorem 4.7. For any function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is pairwise D-open map.
- (2) $f((A_i^0)) \subseteq O_i^l(f(A) \text{ for any } A \subseteq X, i = 1, 2.$
- (3) $(f^{-1}(B)_i^o \subseteq f^{-1}(O_i^l(B) \text{ for any } B \subseteq X^*, i = 1, 2.$
- (4) $f^{-1}(H_i^m(B)) \subseteq H_i^m(f^{-1}(B))$ for any $B \subseteq X^*, i = 1, 2$.

Theorem 4.8. For any function $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq)$, the following statements are equivalent:

- (1) f is an B-open map.
- (2) $f((A_i^0)) \subseteq O_i^b(f(A) \text{ for any } A \subseteq X, i = 1, 2.$
- (3) $(f^{-1}(B)_i^o \subseteq f^{-1}(O_i^b(B) \text{ for any } B \subseteq X^*, i = 1, 2.$
- (4) $f^{-1}(H_i^b(B)) \subseteq H_i^b(f^{-1}(B))$ for any $B \subseteq X^*, i = 1, 2$.

Theorem 4.9. Let $f : (X, \tau_1, \tau_2, \leq_1) \to (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \to (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. *Then*

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if f is pairwise open and g is pairwise x-open for x = I, D, B.

(2) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if both f and g are pairwise x-open for x = I, D, B. (3) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-open if f is pairwise y-open and g is pairwise x-open for $x, y \in \{I, D, B\}$.

Proof. Omitted.

5 Pairwise *I*-closed, Pairwise *D*-closed and Pairwise *B*-closed maps

Definition 5.1. A function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$ is called a pairwise I-closed (resp. a pairwise D-closed, a pairwise B-closed) map if $f(G) \in \Omega(H_i^m(X^*))$ (resp. $f(G) \in \Omega(H_i^l(X^*)), f(G) \in \Omega(H_i^b(X^*))$) whenever G is a τ_i -open subset of (X, τ_1, τ_2) , where $\Omega(H_i^m(X^*))$ (resp. $COmega(H_i^l(X^*)), \Omega(H_i^b(X^*))$) is the collection of all τ_i -increasing (resp. τ_i -decreasing, both τ_i -increasing and τ_i -decreasing) closed subsets of $(X^*, \tau_1^*, \tau_2^*, \leq^*), i = 1, 2$.

Clearly every pairwise *x*-closed map is a pairwise closed map for x = I, D, B and every pairwise *B*-closed map is both pairwise *I*-closed and pairwise *D*-closed. The following Example shows that a pairwise closed map need not be pairwise *x*-closed for x = I, D, B.

Example 5.2. Let $(X, \tau_1, \tau_2, \leq)$ and f be as in the Example 3.2. f is a pairwise closed map but f is not pairwise x-closed for x = I, D, B.

The following Example shows that a pairwise *I*-closed map need not be a pairwise *B*-closed map.

Example 5.3. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq and \leq^* be as in the Example 4.3. <math>\theta$ is pairwise I-closed but not a pairwise B-closed map.

The following Example shows that a pairwise I-closed map need not be a pairwise B-closed map.

Example 5.4. Let $X, X^*, \tau_1, \tau_2, \tau_1^*, \tau_2^*, \leq \leq *$ and φ be as in the Example 4.4. φ is a pairwise D-closed map but not a pairwise B-closed map.

Thus we have the following diagram:

For a function $f : (X, \tau_1, \tau_2, \leq) \to (X^*, \tau_1^*, \tau_2^*, \leq^*)$,where $P \to Q$ (resp. $P \nleftrightarrow Q$) represents P implies Q butQ need not imply P(resp. P and Q are independent of

each other).

The following Theorem characterizes *I*-closed maps.

Theorem 5.5. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise I-closed if and only if $H_i^m(f(A)) \subseteq f(\bar{A}_i)$ for every $A \subseteq X, i = 1, 2$.

Proof. Necessity: Since f is pairwise I-closed, then $f(\bar{A}_i)$ is a τ_i -increasing closed subset of X and $f(A) \subseteq f(\bar{A}_i)$. Therefore $H_i^m(f(A)) \subseteq f(\bar{A}_i)$ since $H_i^m(f(A))$ is the smallest τ_i -increasing closed set in X^* containing f(A).

Sufficiency: Let *F* be any τ_i -closed subset of *X*. Then $f(F) \subseteq H_i^m(f(F)) \subseteq f(\overline{F}_i) = f(F)$. Thus $f(F) = H_i^m(f(F))$. So f(F) is a τ_i -increasing closed subset of X^* . Therefore *f* is a pairwise *I*-closed map.

The following two Theorems characterize pairwise D-closed maps and pairwise B-closed maps.

Theorem 5.6. Let $f: (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise D-closed if and only if $H_i^l(f(A)) \subseteq f(\bar{A}_i)$ for every $A \subseteq X, i = 1, 2$.

Proof. Omitted

Theorem 5.7. Let $f: (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be any map. Then f is pairwise B-closed if and only if $H_i^b(f(A)) \subseteq f(\overline{A}_i)$ for every $A \subseteq X, i = 1, 2$.

Proof. Omitted

Theorem 5.8. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then

- (1) f is pairwise I-open if and only if f is pairwise D-closed.
- (2) f is pairwise I-closed if and only if f is pairwise D-open.
- (3) f is pairwise B-open if and only if f is pairwise B-closed.

Proof. (1) Necessity: Let *F* be any τ_i -closed subset of *X*. Then $f(X \setminus F)$ is a τ_i^* -increasing open subset of X^* since *f* is a pairwise *I*-open map and (*X F*) is a τ_i -open subset of *X*. Since *f* is a pairwise bijection, then we have $f(X \setminus F) = X \setminus (f(F))$. So f(F) is a τ_i^* -decreasing closed subset of X^* . Therefore f is pairwise D-closed.

Sufficiency: Let G be any τ_i -open subset of X. Then $f(X \setminus G)$ is a τ_i -decreasing closed subset of X^{*} since f is a pairwise *D*-closed map and $X \setminus G$ is a τ_i -closed subset of *X*. Since *f* is a pairwise bijection, then we have that $f(X \setminus G) = X \setminus f(G)$. So f(G) is a τ_i -increasing open subset of X^* . Therefore f is a pairwise I-open map. The proofs for (2) and (3) are similar to that of (1).

Theorem 5.9. Let $f : (X, \tau_1, \tau_2, \leq_1) \to (y, \nu_1, \nu_2, \leq_2)$ and $g : (y, \nu_1, \nu_2, \leq_2) \to (Z, \eta_1, \eta_2, \leq_3)$ be any two mappings. Then

(1) $g \circ f : (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if f is pairwise closed and g is pairwise x-closed for x = I, D, B.

(2) $g \circ f: (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if both f and g are pairwise x-closed for x = I, D, B. (3) $g \circ f: (X, \tau_1, \tau_2, \leq_1) \to (Z, \eta_1, \eta_2, \leq_3)$ is pairwise x-closed if f is pairwise y-closed and g is pairwise x-closed for $x, y \in \{I, D, B\}$.

Theorem 5.10. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise I-open map.
- (2) f is a pairwise D-closed map.
- (3) f^{-1} is a pairwise *I*-continuous.

Theorem 5.11. Let $f: (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise D-open map.
- (2) f is a pairwise I-closed map.
- (3) f^{-1} is a pairwise *D*-continuous.

Theorem 5.12. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise bijection map. Then the following statements are equivalent:

- (1) f is a pairwise B-open map.
- (2) f is a pairwise B-closed map.
- (3) f^{-1} is a pairwise *B*-continuous.

Theorem 5.13. Let $f : (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise I-closed map and $B, C \subseteq X^*$. Then

(1) If U is an τ_i -open neighborhood of $f^{-1}(B)$, then there exists a τ_i -decreasing open neighborhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U, i = 1, 2$.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighborhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -decreasing open neighborhoods, i = 1, 2.

Proof. (1) Let U be a τ_i -open neighborhood of $f^{-1}(B)$. Take $X^* \setminus V = f(X \setminus U)$. Since f is a pairwise I-closed map and $X \setminus U$ is a τ_i -closed set, then $X^* \setminus V = f(X \setminus U)$ is a τ_i -increasing closed subset of X^* . Thus V is a i-decreasing open subset of X^{*}. Since f -1(B) U, then $X^* \setminus V = f(X \setminus U) \subseteq f(f^{-1}(X^* \setminus B)) \subseteq X^* \setminus B$. So $B \subseteq V$. Thus V is a τ^*_i - decreasing open neighborhood of B. Further $X \setminus U \subseteq f^{-1}(f(X \setminus U)) = f^{-1}(X^* \setminus V) = X^* \setminus (f^{-1}(V))$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Theorem 5.14. Let $f: (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise D-closed map and $B, C \subseteq X^*$. Then

(1) If U is an τ_i -open neighborhood of $f^{-1}(B)$, then there exists a τ_i -decreasing open neighborhood V of B such that $f^{-1}(B) \subset f^{-1}(V) \subset U, i = 1, 2$.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighborhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -increasing open neighborhoods, i = 1, 2.

Theorem 5.15. Let $f: (X, \tau_1, \tau_2, \leq) \rightarrow (X^*, \tau_1^*, \tau_2^*, \leq^*)$ be a pairwise B-closed map and $B, C \subseteq X^*$. Then

(1) If U is an τ_i -open neighborhood of $f^{-1}(B)$, then there exists a τ_i -open neighborhood V of B which are both τ_i increasing and τ_i -decreasing. such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$, i = 1, 2.

(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i -neighborhoods, then $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_i - open neighborhoods which are both τ_i - increasing and τ_i -decreasing, i = 1, 2.

References

- G. Balaji , G. Ganesh and N. Rajesh, separation axioms in bitopological ordered spaces , International Journal of Pure and Applied Mathematics, Vol. 114, No. 2 2017, 221–229
- [2] A. Kandil, O. Tantawy, S.A. El-Sheikh and M. Hosny, Connectedness in (Ideal) Bitopological Ordered Spaces Gen. Math. Notes, Vol. 24, No. 2, October 2014, pp.37–52.
- [3] A. Kandil, O. Tantawy, S.A. El-Sheikh and M. Hosny, *IP-separation axioms in Ideal bitopological ordered spaces I*, Sohag J. Math. Vol.2, No.1 (2015) 11-15.
- [4] A. Kandil, O. Tantawy, S.A. El-Sheikh and M. Hosny, *IP-separation axioms in ideal bitopological ordered spaces II*, Journal of the Egyptian Mathematical Society 24(2016), 279-285
- [5] A. Kandil a , Amr Zakaria b, Note on IP-separation axioms in ideal bitopological ordered spaces Journal of the Egyptian Mathematical Society, 25, (2017) , 155-157

- [6] L. Nachbin, Topology and Order, D.Van Nostrand Inc., Princeton, New Jersey, 1965.
- [7] T. G. Raghavan, Quasi-ordered bitopological spaces. The Mathematics student XLI (1973), 276-284.
- [8] T. G. Raghavan, Quasi-ordered bitopological spaces II. Kyungpook Math.J. 20 (1980), 145–158.
- [9] M. K. Singal and A. R. Singal, Bitopological ordered spaces. The Mathematics student. XXXIX (1971), 440–447.
- [10] M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII, M(1)(2002), 67–76.