Some weaker forms of Continuity in Bitopological ordered spaces

M. Y. Bakier ${ }^{1}$, A. F. Sayed ${ }^{2, *}$
${ }^{1}$ Mathematics Department, Faculty of Science, Assiut University, Assiut 71515, Egypt.
*Mathematics Department, Al-Lith University College, Umm Al-Qura University, P.O. Box 112, Al-Lith 21961, Makkah Al Mukarramah, Kingdom of Saudi Arabia.
*E-mail:dr.afsayed@hotmail.com

Abstract

The main purpose of the present paper is to introduce and study some weaker forms of continuity in bitopological ordered spaces.S uch as pairwise I-continuous maps, pairwise D-continuous maps, pairwise B-continuous maps, pairwise I-open maps, pairwise D-open maps, pairwise B-open maps, pairwise I-closed maps, pairwise D-closed maps and pairwise B-closed maps.

1 Introduction

Singal, M. K. and Singal, A. R. [9] initiated the study of bitopological ordered spaces. Raghavan, T. G. [7], [8] and other authors have contributed to development and construction some properties of such spaces (see,[1] ,[4],[3], [2], [5]). In (2002) M.K.R.S. Veera Kumar [10] introduced I-continuous maps, D-continuous maps and B-continuous maps, I-open maps, D-open maps, B-open maps, I-closed maps, D-closed maps and B-closed maps for topological ordered spaces together with their characterizations. Leopoldo Nachbin [6] initiated the study of topological ordered spaces in (1965). A topological ordered space is a triple (X, τ, \leq), where τ is a topology on X and \leq is a partial order on X. In this paper we introduce pairwise I-continuous maps, pairwise D-continuous maps and pairwise B-continuous maps, pairwise I-open maps, pairwise D-open maps, pairwise B-open maps,

* Corresponding Author.

Received September 14, 2017; revised January 10, 2018; accepted February 01, 2018.
2010 Mathematics Subject Classification: 54F05, 54E55.
Key words and phrases: Ordered topological space, increasing sets, decreasing sets, continuous maps, pairwise continuous maps, pairwise open maps,pairwise closed maps.
This is an open access article under the CC BY license http://creativecommons.org/licenses/by/3.0/.
pairwise I-closed maps, pairwise D-closed maps and pairwise B-closed maps for bitopological ordered spaces together with their characterizations as a generalization of that were studied for topological ordered spaces by M.K.R.S. Veera Kumar [10].

2 Preliminaries

Let (X, \leq) be a partially ordered set (i.e. a set X together with a reflexive, antisymmetric and transitive relation).
For a subset $A \subseteq X$, we write:

$$
\begin{aligned}
& L(A)=\{y \in X: y \leq x \text { for some } x \in A\} \\
& M(A)=\{y \in X: x \leq y \text { for some } x \in A\}
\end{aligned}
$$

In particular, if A is a singleton set, say $\{x\}$, then we write $L(x)$ and $M(x)$ respectively. A subset A of X is said to be decreasing (resp. increasing) if $A=L(A)$ (resp. $A=M(A)$). The complement of a decreasing (resp. an increasing) set is an increasing (resp. a decreasing) set. A mapping $f:(X, \leq) \rightarrow\left(X^{*}, \leq^{*}\right)$ from a partially ordered set (X, \leq) to a partially ordered set $\left(X^{*}, \leq^{*}\right)$ is increasing (resp. a decreasing) if $x \leq y$ in X implies $f(x) \leq^{*} f(y)$ (resp. $f(y) \leq^{*} f(x)$). f is called an order isomorphism if it is an increasing bijection such that f^{-1} is also increasing.

A bitopological ordered space [9] is a quadruple consisting of a bitopological space (X, τ_{1}, τ_{2}), and a partial order \leq on X; it is denoted as $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. The partial order \leq said to be closed (resp. weakly closed) [7] if its graph $G(\leq)=\{(x, y): x \leq y\}$ is closed in the product topology $\tau_{i} \times \tau_{j}\left(\right.$ resp. $\left.\tau_{1} \times \tau_{2}\right)$ where $i, j=1,2 ; i \neq j$, or equivalently, if $L(x)$ and $M(x)$ are τ_{1}-closed, where $i=1,2$ (resp. $L(x)$ is τ_{1}-closed and $M(x)$ is τ_{2}-closed), for each $x \in X$.

$$
\begin{aligned}
& \text { For a subset } A \text { of a bitopological ordered space }\left(X, \tau_{1}, \tau_{2}, \leq\right), \\
& H_{i}^{l}(A)=\bigcap\left\{F \mid F \text { is } \tau_{i} \text {-decreasing closed subset of } X \text { containing } A\right\}, \\
& H_{i}^{m}(A)=\bigcap\left\{F \mid F \text { is } \tau_{i} \text {-increasing closed subset of } X \text { containing } A\right\}, \\
& H_{i}^{b}(A)=\bigcap\{F \mid F \text { is a closed subset of } X \text { containing } A \text { with } F=L(F)=M(F)\}, \\
& O_{i}^{l}(A)=\bigcup\left\{G \mid G \text { is } \tau_{i} \text {-decreasing open subset of } X \text { contained in } A\right\}, \\
& O_{i}^{m}(A)=\bigcup\left\{G \mid G \text { is } \tau_{i} \text {-increasing open subset of } X \text { contained in } A\right\}, \\
& O_{i}^{b}(A)=\bigcup\left\{G \mid G \text { is both } \tau_{i} \text {-increasing and } \tau_{i}-\text { decreasing open subset of } X \text { contained in } A\right\} .
\end{aligned}
$$

Clearly, $H_{i}^{m}(A)$ (resp. $\left.H_{i}^{l}(A), H_{i}^{b}(A)\right)$ is the smallest $\tau_{i}-$ increasing resp. $\tau_{i}-$ decreasing, both $\tau_{i}-$ increasing and τ_{i} - decreasing) closed set containing A. Moreover $\bar{A}_{i} \subseteq H_{i}^{m}(A) \subseteq H_{i}^{b}(A)$ and where \bar{A}_{i} stands for the $\tau_{i}-$ closure of A in $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$. Further A is τ_{i}-decreasing (resp. $\tau_{i}-$ increasing) closed if and only if $A=H_{i}^{m}(A)=H_{i}^{l}(A)$.

Clearly, $O_{i}^{m}(A)$ (resp. $\left.O_{i}^{l}(A), O_{i}^{b}(A)\right)$ is the largest τ_{i}-increasing resp. τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) open set contained in A. Moreover $O_{i}^{b}(A) \subseteq O_{i}^{m}(A) \subseteq A_{i}^{o}$ and $O_{i}^{b}(A) \subseteq O_{i}^{l}(A)$, where A_{i}^{o} denotes the τ_{i}-interior of A in $\left(X, \tau_{1}, \tau_{2}, \leq\right), i \neq j$. If A and B are two τ_{1} subsets of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right), i \neq j$ such that $A \subseteq B$, then $O_{i}^{m}(A) \subseteq O_{i}^{m}(B) \subseteq B_{i}^{o} . \Omega\left(O_{i}^{m}(X)\right)$ resp. $\Omega\left(O_{i}^{l}(X)\right), \Omega\left(O_{i}^{b}(X)\right)$ denotes the collection of all τ_{i}-increasing (resp. $\tau_{i}-$ decreasing, both τ_{i}-increasing and τ_{i}-decreasing) open subset of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right)$.

3 Pairwise I-continuous, Pairwise D-continuous and Pairwise B continuous maps

Definition 3.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$ is called a pairwise I-continuous (resp. a pairwise D-continuous, a pairwise B-continuous) map if $f^{-1}(G) \in \Omega\left(O_{i}^{m}(X)\right)$ (resp. $f^{-1}(G) \in \Omega\left(O_{i}^{l}(X)\right), f^{-1}(G) \in$ $\left.\Omega\left(O_{i}^{b}(X)\right)\right)$, whenever G is a $i-$ open subset of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), i=1,2$.

It is evident that every pairwise x-continuous map is pairwise continuous for $x=I, D, B$ and that every pairwise B-continuous map is both pairwise I-continuous and pairwise D-continuous.

Example 3.2. Let $X=\{a, b, c\}, \tau_{1}=\{\varnothing, X,\{a\},\{b\},\{a, b\}\}, \tau_{2}=\{\varnothing, X,\{c\}\}$ and $\leq=\{(a, a),(b, b),(c, c),(a, b),(b, c),(a, c)\}$. Clearly $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ is a bitopological ordered space. Let f be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ onto itself. $\{b\}$ is τ_{1}-open and $\{c\}$ is τ_{2}-open but $f^{-1}(\{b\})=\{b\}$ is neither a τ_{1}-increasing nor a τ_{1}-decreasing open set and also $f^{-1}(\{c\})=\{c\}$ is neither a τ_{2}-increasing nor a $\tau_{2}-$ decreasing open set and. Thus f is not pairwise x-continuous for $x=I, D, B$. However f is continuous.

The following Example supports that a pairwise D-continuous map need not be a pairwise B-continuous map.

Example 3.3. Let $X=\{a, b, c\}=X^{*}, \tau_{1}=\{\varnothing, X,\{a\},\{b\},\{a, b\}\}=\tau_{1}^{*}, \tau_{2}=\{\varnothing, X,\{c\}\}=\tau_{2}^{*}$ and $\leq=$ $\{(a, a),(b, b),(c, c),(a, c)\}$ and $\leq^{*}=\{(a, a),(b, b),(c, c),(a, b),(a, c),(b, c)\}$. Let g be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right.$) onto ($X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$). g is not pairwise B-continuous. However g is a pairwise D-continuous map.

The following Example supports that a pairwise I-continuous map need not be a pairwise B-continuous map.

Example 3.4. Let $X=\{a, b, c\}=X^{*}, \tau_{1}=\{\varnothing, X,\{a\},\{b\},\{a, b\}\}, \tau_{1}^{*}=\left\{\varnothing, X^{*},\{a\}\right\}, \tau_{2}=\{\varnothing, X,\{c\}\}, \tau_{2}^{*}=$ $\{\varnothing, X,\{b\},\{c\},\{b, c\}\}$ and $\leq=\{(a, a),(b, b),(c, c),(a, b),(a, c),(c, b)\}=\leq^{*}$. Define $h:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right.$) by $h(a)=b, h(b)=a$ and $h(c)=c$. h is pairwise $I-$ continuous but not a pairwise $B-$ continuous map.

Thus we have the following diagram:
For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$
, where $P \rightarrow Q$ (resp. $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp. P and Q are independent of

Figure 1:
each other).
The following Theorem characterizes pairwise I-continuous maps.
Theorem 3.5. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise I-continuous.
(2) $f\left(H_{i}^{l}(A)\right) \subseteq{\overline{(f(A))_{i}}}_{i}$ for any $A \subseteq X, i=1,2$.
(3) $H_{i}^{l}\left(f^{-1}(B) \subseteq f^{-1}(\bar{B}) i\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) For every $\tau_{i}^{*}-$ closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is a τ_{i}-decreasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Proof. (1) $\Rightarrow(2)$: Since $X^{*} \backslash \overline{(f(A))_{i}}$ is τ_{i}-open in X^{*} and f is pairwise I-continuous, then $f^{-1}\left(X \backslash \overline{(f(A))_{i}}\right)$ is a τ_{i}-increasing open set in X. Then $X \backslash f^{-1}\left(X \backslash \overline{(f(A))_{i}}\right)$ is a τ_{i} - decreasing closed subset of X. Since $X \backslash f^{-1}(X \backslash$ $\left.\overline{(f(A))_{i}}\right)=f^{-1}\left(\overline{(f(A))_{i}}\right)$, then $f^{-1}\left(\overline{(f(A))_{i}}\right)$ is a τ_{i}-decreasing closed subset of X. Since $A \subseteq f^{-1}\left(\overline{(f(A))_{i}}\right)$ and is the smallest τ_{i}-decreasing closed set containing A, then $H_{i}^{l}(A) \subseteq f^{-1}\left(\overline{(f(A))_{i}}\right) \cdot f\left(f^{-1}\left(\overline{(f(A))_{i}}\right)\right.$
$\subseteq \overline{(f(A))_{i}}$. Thus $H_{i}^{l}(A) \subseteq \overline{(f(A))_{i}}$.
(2) $\Rightarrow(3)$: Let $A=f^{-1}(B)$. Then $f(A)=f\left(f^{-1}(B)\right) \subseteq B$. This implies $(\overline{f(A)})_{i} \bar{B}_{i}$.

Now $H_{i}^{l}\left(f^{-1}(B)\right) \subseteq H_{i}^{l}(A) \subseteq f^{-1}\left(f\left(H_{i}^{l}(A)\right)\right) \subseteq f^{-1}(\overline{f(A)})_{i}\left[\operatorname{By}(2)\right.$ in this theorem 3.5]. But $f^{-1}(\overline{f(A)})_{i} \subseteq$ $f^{-1}\left(\bar{B}_{i}\right)$. Thus $H_{i}^{l}\left(f^{-1}(B)\right) \subseteq f^{-1}\left(\bar{B}_{i}\right)$.
(3) $\Rightarrow(4): H_{i}^{l}\left(f^{-1}(K)\right) \subseteq f^{-1}\left(\bar{K}_{i}\right)$ for any $\tau_{i}^{*}-$ closed set K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. Thus $f^{-1}(K)$ is a $\tau_{i}-$ decreasing closed in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ whenever K is a $\tau_{i}^{*}-$ closed set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$.
(4) $\Rightarrow(1)$: Let G be a τ_{i}^{*}-open set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. Then $f^{-1}(X \backslash(G))$ is a τ_{i}-decreasing closed set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$, since $X^{*} \backslash(G)$ is a closed set in $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$. But $X \backslash\left(f^{-1}(G)\right)=f^{-1}(X \backslash G)$. Thus $X \backslash\left(f^{-1}(G)\right)$ is a $\tau_{i}-$ decreasing closed set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. So $f^{-1}(G)$ is a τ_{i}-increasing open set in $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. Thus f is pairwise I-continuous.

The following two Theorems characterize pairwise D-continuous maps and pairwise B-continuous maps, whose proofs are similar to as that of the above Theorem 3.5.

Theorem 3.6. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise D-continuous.
(2) $f\left(H_{i}^{m}(A)\right) \subseteq{\overline{(f(A))_{i}}}_{i}$ for any $A \subseteq X, i=1,2$.
(3) $H_{i}^{m}\left(f^{-1}(B) \subseteq f^{-1}(\bar{B}) i\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) For every $\tau_{i}^{*}-$ closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is a $\tau_{i}-$ increasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Theorem 3.7. For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise B-continuous.
(2) $f\left(H_{i}^{b}(A)\right) \subseteq{\overline{(f(A))_{i}}}_{i}$ for any $A \subseteq X, i=1,2$.
(3) $H_{i}^{b}\left(f^{-1}(B) \subseteq f^{-1}(\bar{B}) i\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) For every τ_{i}^{*}-closed subset K of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right), f^{-1}(K)$ is both τ_{i}-increasing and τ_{i}-decreasing closed subset of $\left(X, \tau_{1}, \tau_{2}, \leq\right), i=1,2$.

Theorem 3.8. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, v_{1}, v_{2}, \leq_{2}\right)$ and $g:\left(y, v_{1}, v_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous and g is pairwise continuous for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-continuous and g is pairwise y-continuouss for $x, y \in$ $\{I, D, B\}$.

4 Pairwise I-open, Pairwise D-open and Pairwise B-open maps

Definition 4.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ is called a pairwise I-open (resp. a pairwise D-open, a pairwise B-open) map if $f(G) \in \Omega\left(O_{i}^{m}\left(X^{*}\right)\right)$ (resp. $\left.f(G) \in \Omega\left(O_{i}^{l}\left(X^{*}\right)\right), f(G) \in \Omega\left(O_{i}^{b}\left(X^{*}\right)\right)\right)$ whenever G is a $\tau_{i}-$ open subset of $\left(X, \tau_{1}, \tau_{2}\right), i=1,2$.

It is evident that every pairwise x-open map is a pairwise open map for $x=I, D, B$ and that every pairwise B-open map is both pairwise $I-$ open and pairwise $D-$ open.

The following Example shows that a pairwise open map need not be pairwise x-open for $x=I, D, B$.
Example 4.2. Let $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ and f be as in the Example 3.2. f is a pairwise open map but f is not pairwise x-open for $x=I, D, B$.

The following Example shows that a pairwise D-open map need not be a pairwise B-open map.
Example 4.3. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$ and \leq^{*} be as in the Example 3.3. Let θ be the identity map from $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ onto ($X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}$). θ is pairwise D-open but not a pairwise B-open map.

The following Example shows that a pairwise I-open map need not be a pairwise B-open map
Example 4.4. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$ and \leq^{*} be as in the Example 3.4. Define $\varphi:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$. by $\varphi(a)=b, \varphi(b)=a$ and $\varphi(c)=c$. φ is a pairwise I-open map but not a pairwise B-open map.

Thus we have the following diagram:

For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$
,where $P \rightarrow Q($ resp. $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp. P and Q are independent of

Figure 2:
each other).
Before characterizing pairwise I-open (resp. pairwise D-open, pairwise B-open) maps, we establish the following useful Lemma.

Lemma 4.5. Let A be any subset of a bitopological ordered space $\left(X, \tau_{1}, \tau_{2}, \leq\right)$. Then
(1) $X \backslash H_{i}^{l}(A)=O_{i}^{m}(X \backslash A), i=1,2$
(2) $X \backslash H_{i}^{m}(A)=O_{i}^{l}(X \backslash A), i=1,2$
(31) $X \backslash H_{i}^{b}(A)=O_{i}^{b}(X \backslash A), i=1,2$

Proof. (1) $X \backslash H_{i}^{l}(A)=X \backslash\left(\cap\left\{F \mid F\right.\right.$ is a $\tau_{i}-$ decreasing closed subset of X containing $\left.A\right\}=\bigcup\left\{X \backslash F \mid F\right.$ is a $\tau_{i}-$ decreasing closed subset of X containing $A\}=\bigcup\left\{G \mid G\right.$ is an τ_{i}-increasing open subset of X contained in $\left.X \backslash A\right\}=O_{i}^{m}(X \backslash A)$.

The proofs for (2) and (3) are analogous to that of (1) and so omitted.
The following Theorem characterizes pairwise I-open functions.
Theorem 4.6. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise I-open map.
(2) $f\left(\left(A_{i}^{0}\right)\right) \subseteq O_{i}^{m}(f(A)$ for any $A \subseteq X, i=1,2$.
(3) $\left(f^{-1}(B)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(B)\right.\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) $f^{-1}\left(H_{i}^{l}(B)\right) \subseteq H_{i}^{l}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, i=1,2$.

Proof. (1) $\Rightarrow(3)$: Since $\left(f^{-1}(B)\right)_{i}^{o}$ is τ_{i}-open in X and f is pairwise I-open, then $f\left(\left(f^{-1}(B)\right)_{i}^{o}\right)$ is an τ_{i}-increasing open set in X^{*}. Also $\left.f\left(f^{-1}(B)\right)_{i}^{o}\right) \subseteq f\left(f^{-1}(B)\right) \subseteq B$. Then $f\left(f^{-1}(B)\right)_{i}^{o} \subseteq O_{i}^{m}(B)$ since $O_{i}^{m}(B)$ is the largest τ_{i} - increasing open set contained in B. Therefore $\left(f^{-1}(B)\right)_{i}^{0} \subseteq f^{-1}\left(O_{i}^{m}(B)\right)$.
(3) \Rightarrow (4): Replacing B by $X \backslash B$ in (3), we get $\left(f^{-1}(X \backslash B)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(X \backslash B)\right)$. Since $\left.f^{-1}(X \backslash B)\right)=$ $X \backslash\left(f^{-1}(B)\right)$, then $\left(X \backslash\left(f^{-1}(B)\right)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(X \backslash B)\right)$. Now $X \backslash\left(H_{i}^{l}\left(f^{-1}(B)\right)\right)=O_{i}^{m}\left(X \backslash\left(f^{-1}(B)\right)\right) \subseteq(X \backslash$
$\left.\left(f^{-1}(B)\right)\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(X \backslash(B))\right)=f^{-1}\left(X \backslash\left(H_{i}^{l}(B)\right)\right)=X \backslash\left(f^{-1}\left(H_{i}^{l}(B)\right)\right)$ using the above Lemma 4.5. Therefore $\left.f^{-1}\left(H_{i}^{l}(B)\right)\right) \subseteq H_{i}^{l}\left(f^{-1}(B)\right)$.
$(4) \Rightarrow(3)$: All the steps in $(3) \Rightarrow(4)$ are reversible.
(3) \Rightarrow (2): Replacing B by $f(A)$ in (3), we get $\left(f^{-1}(f(A))\right)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(f(A))\right)$. Since $A_{i}^{o} \subseteq\left(f^{-1}(f(A))\right)_{i}^{o}$, then we have $A_{i}^{o} \subseteq f^{-1}\left(O_{i}^{m}(f(A))\right)$.This implies that $f\left(A_{i}^{o}\right) \subseteq f\left(f^{-1}\left(O_{i}^{m}(f(A))\right)\right) \subseteq O_{i}^{m}(f(A))$. Hence $f\left(A_{i}^{o}\right) \subseteq$ $O_{i}^{m}(f(A))$.
(2) \Rightarrow (1): Let G be any τ_{i}-open subset of X. Then $f(G)=f\left(G_{i}^{o}\right) \subseteq O_{i}^{m}(f(G))$. So $f(G)$ is a τ_{i}^{*}-increasing open set in X^{*}. Therefore f is a pairwise I-open map.

The following two Theorems give characterizations for D-open maps and B-open maps, whose proofs are similar to as that of the above Theorem 4.6.

Theorem 4.7. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is pairwise D-open map.
(2) $f\left(\left(A_{i}^{0}\right)\right) \subseteq O_{i}^{l}(f(A)$ for any $A \subseteq X, i=1,2$.
(3) $\left(f^{-1}(B)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{l}(B)\right.\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) $f^{-1}\left(H_{i}^{m}(B)\right) \subseteq H_{i}^{m}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, i=1,2$.

Theorem 4.8. For any function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq\right)$, the following statements are equivalent:
(1) f is an B-open map.
(2) $f\left(\left(A_{i}^{0}\right)\right) \subseteq O_{i}^{b}(f(A)$ for any $A \subseteq X, i=1,2$.
(3) $\left(f^{-1}(B)_{i}^{o} \subseteq f^{-1}\left(O_{i}^{b}(B)\right.\right.$ for any $B \subseteq X^{*}, i=1,2$.
(4) $f^{-1}\left(H_{i}^{b}(B)\right) \subseteq H_{i}^{b}\left(f^{-1}(B)\right)$ for any $B \subseteq X^{*}, i=1,2$.

Theorem 4.9. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, v_{1}, v_{2}, \leq_{2}\right)$ and $g:\left(y, v_{1}, v_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if f is pairwise open and g is pairwise x-open for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if both f and g are pairwise x-open for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-open if f is pairwise y-open and g is pairwise x-open for $x, y \in\{I, D, B\}$.

Proof. Omitted.

5 Pairwise I-closed, Pairwise D-closed and Pairwise B-closed maps

Definition 5.1. A function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ is called a pairwise I-closed (resp. a pairwise D-closed, a pairwise B-closed) map if $f(G) \in \Omega\left(H_{i}^{m}\left(X^{*}\right)\right)$ (resp. $f(G) \in \Omega\left(H_{i}^{l}\left(X^{*}\right)\right), f(G) \in \Omega\left(H_{i}^{b}\left(X^{*}\right)\right)$) whenever G is a τ_{i}-open subset of $\left(X, \tau_{1}, \tau_{2}\right)$, where $\Omega\left(H_{i}^{m}\left(X^{*}\right)\right)$ (resp. COmega $\left(H_{i}^{l}\left(X^{*}\right)\right), \Omega\left(H_{i}^{b}\left(X^{*}\right)\right)$ is the collection of all τ_{i}-increasing (resp. τ_{i}-decreasing, both τ_{i}-increasing and τ_{i}-decreasing) closed subsets of $\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right), i=1,2$.

Clearly every pairwise x-closed map is a pairwise closed map for $x=I, D, B$ and every pairwise B-closed map is both pairwise I-closed and pairwise D-closed. The following Example shows that a pairwise closed map need not be pairwise x-closed for $x=I, D, B$.

Example 5.2. Let $\left(X, \tau_{1}, \tau_{2}, \leq\right)$ and f be as in the Example 3.2. f is a pairwise closed map but f is not pairwise x - closed for $x=I, D, B$.

The following Example shows that a pairwise I-closed map need not be a pairwise B-closed map.
Example 5.3. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq$ and \leq^{*} be as in the Example 4.3. θ is pairwise I-closed but not a pairwise B-closed map.

The following Example shows that a pairwise I-closed map need not be a pairwise B-closed map.
Example 5.4. Let $X, X^{*}, \tau_{1}, \tau_{2}, \tau_{1}^{*}, \tau_{2}^{*}, \leq, \leq^{*}$ and φ be as in the Example 4.4. φ is a pairwise D-closed map but not a pairwise B-closed map.

Thus we have the following diagram:

For a function $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$
, where $P \rightarrow Q$ (resp. $P \leftrightarrow Q$) represents P implies Q but Q need not imply P (resp. P and Q are independent of

Figure 3:
each other).
The following Theorem characterizes I-closed maps.
Theorem 5.5. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise $I-c l o s e d ~ i f ~ a n d ~ o n l y ~ i f ~$ $H_{i}^{m}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Necessity: Since f is pairwise I-closed, then $f\left(\bar{A}_{i}\right)$ is a τ_{i}-increasing closed subset of X and $f(A) \subseteq f\left(\bar{A}_{i}\right)$. Therefore $\left.H_{i}^{m}(f(A)) \subseteq f\left(\bar{A}_{i}\right)\right)$ since $H_{i}^{m}(f(A))$ is the smallest τ_{i}-increasing closed set in X^{*} containing $f(A)$.

Sufficiency: Let F be any τ_{i}-closed subset of X. Then $f(F) \subseteq H_{i}^{m}(f(F)) \subseteq f\left(\bar{F}_{i}\right)=f(F)$. Thus $f(F)=$ $H_{i}^{m}(f(F))$. So $f(F)$ is a τ_{i}-increasing closed subset of X^{*}. Therefore f is a pairwise I-closed map.

The following two Theorems characterize pairwise D-closed maps and pairwise B-closed maps.

Theorem 5.6. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise D-closed if and only if $H_{i}^{l}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Omitted

Theorem 5.7. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be any map. Then f is pairwise $B-$ closed if and only if $H_{i}^{b}(f(A)) \subseteq f\left(\bar{A}_{i}\right)$ for every $A \subseteq X, i=1,2$.

Proof. Omitted

Theorem 5.8. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then
(1) f is pairwise I-open if and only if f is pairwise D-closed.
(2) f is pairwise I-closed if and only if f is pairwise D-open.
(3) f is pairwise B-open if and only if f is pairwise B-closed.

Proof. (1) Necessity: Let F be any τ_{i}-closed subset of X. Then $f(X \backslash F)$ is a τ_{i}^{*}-increasing open subset of X^{*} since f is a pairwise I-open map and $(X F)$ is a τ_{i}-open subset of X. Since f is a pairwise bijection, then we have $f(X \backslash F)=X \backslash(f(F))$. So $f(F)$ is a τ_{i}^{*}-decreasing closed subset of X^{*}. Therefore f is pairwise D-closed.

Sufficiency: Let G be any τ_{i}-open subset of X. Then $f(X \backslash G)$ is a τ_{i}-decreasing closed subset of X^{*} since f is a pairwise D-closed map and $X \backslash G$ is a τ_{i}-closed subset of X. Since f is a pairwise bijection, then we have that $f(X \backslash G)=X \backslash f(G)$. So $f(G)$ is a τ_{i}-increasing open subset of X^{*}. Therefore f is a pairwise I-open map. The proofs for (2) and (3) are similar to that of (1).

Theorem 5.9. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(y, v_{1}, v_{2}, \leq_{2}\right)$ and $g:\left(y, v_{1}, v_{2}, \leq_{2}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ be any two mappings. Then
(1) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if f is pairwise closed and g is pairwise x-closed for $x=I, D, B$.
(2) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if both f and g are pairwise x-closed for $x=I, D, B$.
(3) $g \circ f:\left(X, \tau_{1}, \tau_{2}, \leq_{1}\right) \rightarrow\left(Z, \eta_{1}, \eta_{2}, \leq_{3}\right)$ is pairwise x-closed if f is pairwise y-closed and g is pairwise x-closed for $x, y \in\{I, D, B\}$.

Theorem 5.10. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) f is a pairwise I-open map.
(2) f is a pairwise D-closed map.
(3) f^{-1} is a pairwise $I-$ continuous.

Theorem 5.11. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) f is a pairwise D-open map.
(2) f is a pairwise I-closed map.
(3) f^{-1} is a pairwise D-continuous.

Theorem 5.12. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise bijection map. Then the following statements are equivalent:
(1) f is a pairwise B-open map.
(2) f is a pairwise B-closed map.
(3) f^{-1} is a pairwise $B-$ continuous.

Theorem 5.13. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise $I-$ closed map and $B, C \subseteq X^{*}$. Then
(1) If U is an τ_{i}-open neighborhood of $f^{-1}(B)$, then there exists a τ_{i}-decreasing open neighborhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U, i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-neighborhoods, then $f^{-1}(B)$ and $f^{-} 1(C)$ have disjoint τ_{i}-decreasing open neighborhoods, $i=1,2$.

Proof. (1) Let U be a τ_{i}-open neighborhood of $f^{-1}(B)$. Take $X^{*} \backslash V=f(X \backslash U)$. Since f is a pairwise I-closed map and $X \backslash U$ is a τ_{i}-closed set, then $X^{*} \backslash V=f(X \backslash U)$ is a τ_{i}-increasing closed subset of X^{*}. Thus V is a idecreasing open subset of X^{*}. Since $\mathrm{f}-1(\mathrm{~B}) \mathrm{U}$, then $X^{*} \backslash V=f(X \backslash U) \subseteq f\left(f^{-1}\left(X^{*} \backslash B\right)\right) \subseteq X^{*} \backslash B$. So $B \subseteq V$. Thus V is a ${ }_{i}^{\tau *}-$ decreasing open neighborhood of B. Further $X \backslash U \subseteq f^{-1}(f(X \backslash U))=f^{-1}\left(X^{*} \backslash V\right)=X^{*} \backslash\left(f^{-1}(V)\right)$. Thus $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U$.

Theorem 5.14. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise $D-$ closed map and $B, C \subseteq X^{*}$. Then
(1) If U is an τ_{i}-open neighborhood of $f^{-1}(B)$, then there exists a τ_{i}-decreasing open neighborhood V of B such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U, i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint τ_{i}-neighborhoods, then $f^{-1}(B)$ and $f^{-} 1(C)$ have disjoint τ_{i}-increasing open neighborhoods, $i=1,2$.

Theorem 5.15. Let $f:\left(X, \tau_{1}, \tau_{2}, \leq\right) \rightarrow\left(X^{*}, \tau_{1}^{*}, \tau_{2}^{*}, \leq^{*}\right)$ be a pairwise B-closed map and $B, C \subseteq X^{*}$. Then
(1) If U is an τ_{i}-open neighborhood of $f^{-1}(B)$, then there exists a τ_{i}-open neighborhood V of B which are both $\tau_{i}-$ increasing and τ_{i}-decreasing. such that $f^{-1}(B) \subseteq f^{-1}(V) \subseteq U, i=1,2$.
(2) If $f^{-1}(B)$ and $f^{-1}(C)$ have disjoint $\tau_{i}-$ neighborhoods, then $f^{-1}(B)$ and $f^{-} 1(C)$ have disjoint $\tau_{i}-$ open neighborhoods which are both $\tau_{i}-$ increasing and τ_{i}-decreasing, $i=1,2$.

References

[1] G. Balaji , G. Ganesh and N. Rajesh, separation axioms in bitopological ordered spaces, International Journal of Pure and Applied Mathematics, Vol. 114, No. 2 2017, 221-229
[2] A. Kandil , O. Tantawy , S.A. El-Sheikh and M. Hosny , Connectedness in (Ideal) Bitopological Ordered Spaces Gen. Math. Notes, Vol. 24, No. 2, October 2014, pp.37-52.
[3] A. Kandil, O. Tantawy, S.A. El-Sheikh and M. Hosny, IP-separation axioms in Ideal bitopological ordered spaces I, Sohag J. Math. Vol. 2 , No. 1 (2015) 11-15.
[4] A. Kandil, O. Tantawy, S.A. El-Sheikh and M. Hosny, IP-separation axioms in ideal bitopological ordered spaces II, Journal of the Egyptian Mathematical Society 24(2016) , 279-285
[5] A. Kandil a , Amr Zakaria b, Note on IP-separation axioms in ideal bitopological ordered spaces Journal of the Egyptian Mathematical Society, 25, (2017) , 155-157
[6] L. Nachbin, Topology and Order, D.Van Nostrand Inc., Princeton, New Jersey,1965.
[7] T. G. Raghavan, Quasi-ordered bitopological spaces. The Mathematics student XLI (1973),276-284.
[8] T. G. Raghavan, Quasi-ordered bitopological spaces II. Kyungpook Math.J. 20 (1980), 145-158.
[9] M. K. Singal and A. R. Singal, Bitopological ordered spaces. The Mathematics student. XXXIX (1971), 440-447.
[10] M.K.R.S. Veera Kumar, Homeomorphisms in topological ordered spaces, Acta Ciencia Indica, XXVIII, M(1)(2002), 67-76.

